

Pore-scale reactive transport modeling in cementitious materials: Development and application of a high-performance computing code based on the Lattice-Boltzmann method

Stephan Rohmen

Energie & Umwelt / Energy & Environment Band / Volume 659 ISBN 978-3-95806-812-4

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung (IEK) Nukleare Entsorgung (IEK-6)

Pore-scale reactive transport modeling in cementitious materials: Development and application of a high-performance computing code based on the Lattice-Boltzmann method

Stephan Rohmen

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 659

ISSN 1866-1793

ISBN 978-3-95806-812-4

Contents

I	Introduction and scientific background									
1	Intr	oductio	on	3						
	1.1	Motiv	ation	3						
	1.2	Aims	of this work	5						
	1.3	Outlin	e of the thesis	6						
2	Cementitious materials 9									
	2.1	Introd	uction and cement chemistry notation	9						
	2.2	Types	of cement	9						
	2.3	Cemer	nt raw materials, hydration and microstructure	11						
		2.3.1	Clinker	11						
		2.3.2	Hydration process	12						
		2.3.3	Hydration products	15						
		2.3.4	Microstructural properties and evolution	19						
	2.4	Blende	ed cements and low-pH cement	23						
		2.4.1	Blended cements	23						
		2.4.2	Supplementary cementitious materials	23						
		2.4.3	Low-pH cement	24						
	2.5	Altera	tion and degradation of hydrated cement	25						
		2.5.1	Leaching of alkalis and calcium	25						
		2.5.2	Carbonation	27						
		2.5.3	Sulfate attack	28						
		2.5.4	Other degradation processes	29						
	2.6	Cemer	ntitious materials in nuclear waste management	29						
3	Rea	ctive t	ransport modeling	33						
	3.1	Trans	port modeling	33						
		3.1.1	Continuity equation	33						
		3.1.2	Navier-Stokes equation	34						
		3.1.3	Solute transport: Advection-diffusion equation and porosity	35						
	3.2	2 Thermodynamic modeling								
	3.3	Coupling of reaction and transport processes								
	3.4	Reacti	ive transport modeling approaches on different scales	39						
		3.4.1	Continuum reactive transport modeling	40						
		319	Pore-scale reactive transport modeling	40						

3.5	Lattice	Boltzmann method	42
	3.5.1	Overview	42
	3.5.2	Introduction to the Boltzmann equation	44
	3.5.3	From the Boltzmann equation to the Lattice-Boltzmann equation	45
	3.5.4	Moments of the distribution function and macroscopic constraints	47
	3.5.5	From Lattice-Boltzmann to continuum equations: Chapman-Enscog	
		expansion	47
	3.5.6	Formulation of the Lattice-Boltzmann method	49
	3.5.7	Lattice structure and discrete velocity stencils	50
	3.5.8	Collision operators	55
	3.5.9	Equilibrium distribution functions	57
	3.5.10	Boundary conditions	61

II Model development

65

4	Por	e-scale	reactive transport model development and implementation	67	
4.1 General concept of the coupling code iPP					
	4.2	Imple	mentation of the Lattice-Boltzmann transport code	68	
		4.2.1	Lattice-Boltzmann framework Palabos	68	
		4.2.2	Combination of equilibrium functions and collision operator and		
			Palabos extensions	69	
		4.2.3	Parametrization of the P-TRT scheme	71	
		4.2.4	Unit conversion and reference diffusivity	71	
	4.3	Geoch	nemical solver PhreeqC	74	
		4.3.1	Overview	74	
		4.3.2	Saturation index	75	
	4.4	Coupl	ing code iPP	75	
		4.4.1	Coupling scheme	75	
		4.4.2	Local equilibrium assumption	82	
		4.4.3	Time marching, von Neumann criterion in LBM transport and		
			spatial dimensions	82	
		4.4.4	Software development	83	
		4.4.5	Optimizations to PhreeqC, feature extensions and dynamic chem-		
			istry activity	88	
5	Dep	oarture	from pure equilibrium assumptions	91	
	5.1 Overview				
	5.2	Inclus	ion of nucleation theory in pore-scale reactive transport simulations	91	
		5.2.1	Overview	91	
		5.2.2	Theoretical background	92	
		5.2.3	Combination of nucleation probabilities	95	
		5.2.4	Implementation of CNT in iPP	96	

	5.3	B Porosity controlled solubility					
		5.3.1	Overview	98			
		5.3.2	Effective solubility depending on pore size	99			
		5.3.3	Adjustments to the effective solubility equation $\ldots \ldots \ldots \ldots$	101			
6	Veri	ificatio	n, validation and scalability	103			
	6.1	Overv	iew	103			
	6.2	.2 General validity of Lattice Boltzmann schemes and stability domains					
		6.2.1	General correctness of Lattice-Boltzmann schemes	104			
		6.2.2	Numerical stability and correctness of LBM schemes	107			
		6.2.3	Conclusions	113			
	6.3	.3 Analytical and numerical benchmarks		114			
		6.3.1	Transport only simulations	114			
		6.3.2	Reactive transport simulations	119			
		6.3.3	Conclusions	125			
	6.4	Scalab	pility and computational performance	126			

111	Application	of iPP	to	cementitious	systems
-----	-------------	--------	----	--------------	---------

131

7	ation and preparatory steps for simulating cementitious sys-			
	tem	s with	iPP	133
	7.1	Therm	odynamics of CSH and solid solution models	134
		7.1.1	Discrete and continuous CSH solid solution models	134
		7.1.2	Discretization of CSH solid solution models	135
	7.2	Deriva	tion of microstructure and phase assemblage	140
		7.2.1	Derivation of microstructure with the CEMHYD3D code	140
		7.2.2	Derivation of microstructures from μ -XCT image data $\ldots \ldots$	143
	7.3	Hydra	tion modeling and composition of the low-pH HCP	156
	7.4	Diffusi	vity models for CSH and hydration products	158
		7.4.1	Overview	158
		7.4.2	Archie's law diffusivity model of CSH	159
		7.4.3	Multi-scale diffusivity models and homogenization schemes	159
		7.4.4	Diffusivity model for hydration product phase of low-pH cement .	163
		7.4.5	Software implementation	168
	7.5 Parameters for simulating calcite nucleation		eters for simulating calcite nucleation	170
		7.5.1	Literature review of surface tension values determined for calcite .	170
		7.5.2	Derivation of the number of nucleation sites for calcite	171
		7.5.3	Nucleation probability at microscopic scale	173
		7.5.4	Example of calcite nucleation in a counter diffusion setup	174
	7.6	Deriva	tion of parameters for PCS	176
		7.6.1	Estimating pore radii in CSH	176
		7.6.2	Surface tension values input for PCS calculations	179

8	Application cases								
	8.1	Degradation of hardened OPC paste							
		8.1.1	Overview, model setup and computation	183					
		8.1.2	Results and analyses	185					
	8.2	Deriva	tion of the effective diffusivity of the pristine low-pH cement paste	201					
		8.2.1	Model setup	201					
		8.2.2	Results	201					
	8.3	Degrae	dation of low-pH cement due to leaching	206					
		8.3.1	General model setup and considerations	206					
		8.3.2	Pure equilibrium conditions	209					
		8.3.3	Incorporating classical nucleation theory	214					
		8.3.4	Incorporating porosity controlled solubility	218					
		8.3.5	Comparison of the calculation cases	221					
		8.3.6	Computational performance	227					
	8.4	Effecti	we diffusivity of leached low-pH HCP	229					
		8.4.1	Model setup	229					
		8.4.2	Results	234					
9	Conclusions and outlook								
9.1 Summary and conclusions		arv and conclusions	237						
	9.2	Outloo	ok [°]	240					
Re	eferer	ices		243					
Ap	Appendices								
Α	Chapman-Enscog multi-scale expansion								
В	3 Derivation of the geometrical factor for nucleation theory								
С	C iPP JSON input format 27								

Energie & Umwelt / Energy & Environment Band / Volume 659 ISBN 978-3-95806-812-4

