

Quantitative atomic-level investigation of solid materials through multidimensional electron diffraction measurements

Hoelen Laurence Lalandec-Robert

Schlüsseltechnologien / Key Technologies Band / Volume 277 ISBN 978-3-95806-735-6

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum Jülich GmbH Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C) Physik Nanoskaliger Systeme (ER-C-1/PGI-5)

Quantitative atomic-level investigation of solid materials through multidimensional electron diffraction measurements

Hoelen Laurence Lalandec-Robert

Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies

Band / Volume 277

ISSN 1866-1807

ISBN 978-3-95806-735-6

Contents

Abstract	vii
Kurzfassung	ix
Acknowledgements	xi
List of publications	xiii
Contributions to conferences	xv
Abbreviations	xvii
Naming conventions	xix
Physical constants	xix
Imaging parameters	xix
Physical variables	xx
Further functions and operators	xxi
Introduction	1
Material design at the nanometric scale	1
High-resolution scanning transmission electron microscopy	2
Contents of this thesis	3

1	Fun	damen	tal aspects of TEM	5
		Sumn	nary	5
	1.1	Instru	mentation	5
		1.1.1	Methodological principle	5
		1.1.2	Magnetic lenses and operation modes	6
		1.1.3	Electron sources	10
		1.1.4	Electron detectors	14
	1.2	Beam	-specimen interaction	15
		1.2.1	Relativistic correction	15
		1.2.2	Paraxial approximation	17
		1.2.3	Potential and scattering factors	18
		1.2.4	Multislice solution	19
		1.2.5	Numerical sampling	21
		1.2.6	Thin specimen approximations	22
	1.3	Optic	al aspects of STEM	23
		1.3.1	Lateral resolution for a diffraction-limited system	23
		1.3.2	Optical aberrations	24
		1.3.3	Depth of focus	26
		1.3.4	Principle of reciprocity under the phase object approximation	27
	1.4	Role o	of wave coherence and energy-loss	29
		1.4.1	Partial coherence and the density matrix	29
		1.4.2	Spatial and temporal incoherence of the illumination	31
		1.4.3	Lattice vibrations and phonon excitation	32
		1.4.4	Inelastic scattering	34
		1.4.5	Channelling dynamics in quasi-elastic conditions	35

		1.4.6	Specimen damage and electron dose	37		
		Discus	ssion	38		
2	Ima	ging m	odes in STEM and processing of four-dimensional data	39		
		Summary				
	2.1	Imaging modes in STEM and CTEM				
		2.1.1	Momentum-resolved STEM	39		
		2.1.2	CTEM imaging and phase contrast	42		
		2.1.3	Conventional STEM	43		
		2.1.4	Z-contrast	44		
		2.1.5	First moment $\langle ar{q} angle$ and differential phase contrast $\ldots \ldots \ldots \ldots$	47		
		2.1.6	Analysis based on multiple micrographs	50		
	2.2	Self-co	onsistent calibration of diffraction coordinates	52		
		2.2.1	Mapping of reciprocal space in the presence of elliptical distortion	52		
		2.2.2	Correction of the rotation error	54		
		2.2.3	Signal extraction by virtual detectors	55		
	2.3	Calcul	lation, derivation and integration of the first moment $\langle ec{q} angle$	56		
		2.3.1	Extraction from the MR-STEM data	56		
		2.3.2	Iterative finite differences	56		
		2.3.3	Fourier integration	57		
	2.4	Scalar	second moment $\langle q^2 \rangle$	58		
		2.4.1	Calculation of $\langle q^2 \rangle$ in diffraction space	58		
		2.4.2	Prediction of convergence properties by Mott scattering	61		
		2.4.3	Verification by multislice simulation	62		
		Discus	ssion	64		

3	Infl	luence of plasmon scattering on low-angle electron diffraction 6			
		Summ	nary	67	
	3.1	.1 Importance of inelastic scattering for momentum-resolution			
	3.2	Energ	y-filtered MR-STEM of Pt in [110] orientation	68	
		3.2.1	Experimental set-up	68	
		3.2.2	Determination of a common interval of thickness	70	
		3.2.3	Results and analysis	71	
	3.3	Multis	slice simulation model including single plasmon-losses	74	
	3.4	Role c	f multiple plasmon excitation	75	
	3.5	EF-MI	R-STEM employing multiple energy windows	76	
		3.5.1	Experimental set-up	76	
		3.5.2	Measurement of incident electron intensity emitted by a CFEG	77	
		3.5.3	Results and analysis	79	
	3.6	Convo	olutional model for the inclusion of plasmon scattering	80	
		3.6.1	Concept and implementation	80	
		3.6.2	Verification through a simulation	81	
		3.6.3	Application to the experimental data	82	
		Discu	ssion	82	
4	Focu	us-depe	endence of STEM signals and prospects for surface detection	89	
		Summ	nary	89	
	4.1	Limita	ations of conventional depth sectioning approaches	89	
	4.2	Case s	study on α -In ₂ Se ₃	90	
		4.2.1	Experimental set-up	90	
		4.2.2	Results and analysis	91	

4.3	Interpretation of experimental results through simulation			
	4.3.1	Simulation parameters and focus-dependences	2	
	4.3.2	C-STEM signals	4	
	4.3.3	MR-STEM-specific signals	5	
	4.3.4	Role of acceptance angle in the behavior of $\langle q^2 \rangle$	6	
	4.3.5	Inversion of $\langle \vec{q} \rangle$ across the focus axis	8	
4.4	Multis	slice simulation of bulk Au	8	
4.5	Surfac	e retrieval using a focal series	9	
4.6	Focus	-dependence for different depths of focus	4	
4.7	Role o	f geometrical aberrations	5	
	4.7.1	Third-order spherical aberration	5	
	4.7.2	First-order astigmatism	6	
	4.7.3	Second-order coma and astigmatism	7	
4.8	Influe	nce of the partial spatial and temporal coherence	7	
4.9	Other factors relating to the specimen			
	4.9.1	Specimen tilt	8	
	4.9.2	Carbon contamination	9	
	4.9.3	Temperature	0	
4.10	Comp	arison with other materials	1	
	Discus	ssion	2	
General discussion 115				
	Scalar	second moment $\langle q^2 \rangle$	5	
	Role o	f inelastic scattering in dynamical electron diffraction	5	
	Influe	nce of probe focus on a variety of MR-STEM signals	6	

Conclusion

Prospects		
Topography mapping and quantitative analysis via focal series	121	
Imaging of weakly scattering and dose-sensitive objects	121	
Shape sensitivity in first moment STEM	122	
New detectors for the direct measurement of momentum transfer	123	
3ibliography 1		

119

Schlüsseltechnologien / Key Technologies Band / Volume 277 ISBN 978-3-95806-735-6

