

## Plasma Breakdown and Runaway Modelling in ITER-scale Tokamaks

Junxian Chew

IAS Series Band / Volume 57 ISBN 978-3-95806-730-1



Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC)

## Plasma Breakdown and Runaway Modelling in ITER-scale Tokamaks

Junxian Chew

Schriften des Forschungszentrums Jülich IAS Series

Band / Volume 57

ISSN 1868-8489

ISBN 978-3-95806-730-1

## Contents

| Declaration of Authorship |                    |         |                                         |                                              |  |      |  |  |  |
|---------------------------|--------------------|---------|-----------------------------------------|----------------------------------------------|--|------|--|--|--|
| A                         | Acknowledgements v |         |                                         |                                              |  |      |  |  |  |
| Li                        | ist of             | Figur   | es                                      |                                              |  | ix   |  |  |  |
| Li                        | ist of             | Table   | 5                                       |                                              |  | xiii |  |  |  |
| 1                         | Intr               | roducti | ion                                     |                                              |  | 1    |  |  |  |
| <b>2</b>                  | Tok                | amak    | breakdov                                | wn physics                                   |  | 4    |  |  |  |
|                           | 2.1                | Gener   | al descrip                              | tion of tokamak                              |  | 4    |  |  |  |
|                           |                    | 2.1.1   | Scaling 1                               | aws and tokamak dimensions                   |  | 9    |  |  |  |
|                           | 2.2                | Tokan   | ıak plasm                               | a initiation theory                          |  | 12   |  |  |  |
|                           | 2.3                | Tokan   | ıak experi                              | mental considerations                        |  | 16   |  |  |  |
|                           | 2.4                | Recen   | t numeric                               | al studies                                   |  | 18   |  |  |  |
|                           | 2.5                | 0D ior  | nisation fr                             | action growth rate                           |  | 18   |  |  |  |
|                           | 2.6                | Resear  | ch motiva                               | ation and goals                              |  | 20   |  |  |  |
| 3                         | Imt                | olemen  | tation of                               | numerical model                              |  | 23   |  |  |  |
|                           | 3.1                | Select  | on of plas                              | sma model                                    |  | 23   |  |  |  |
|                           |                    | 3.1.1   | General                                 | overview of particle-based models            |  | 25   |  |  |  |
|                           | 3.2                | Pretty  | Efficient                               | Parallel Coulomb solver                      |  | 27   |  |  |  |
|                           | 3.3                | Gyrop   | ophase corrected Boris pusher algorithm |                                              |  |      |  |  |  |
|                           | 3.4                | Scatte  | ring and i                              | onisation model                              |  | 30   |  |  |  |
|                           |                    | 3.4.1   | Collision                               | probability                                  |  | 31   |  |  |  |
|                           |                    | 3.4.2   | Scatterir                               | ıg angle                                     |  | 34   |  |  |  |
|                           |                    |         | 3.4.2.1                                 | Random Scatter model                         |  | 34   |  |  |  |
|                           |                    |         | 3.4.2.2                                 | Vahedi & Surendra model                      |  | 38   |  |  |  |
|                           |                    |         | 3.4.2.3                                 | Ohkrimovvsky model                           |  | 39   |  |  |  |
|                           | 3.5                | Tokan   | nak field c                             | alculations                                  |  | 41   |  |  |  |
|                           |                    | 3.5.1   | Vector p                                | otential of current density in circular loop |  | 42   |  |  |  |
|                           |                    | 3.5.2   | Poloidal                                | B field                                      |  | 45   |  |  |  |
|                           |                    | 3.5.3   | Toroidal                                | B field                                      |  | 45   |  |  |  |
|                           |                    | 3.5.4   | Toroidal                                | E field                                      |  | 46   |  |  |  |

|   |     | 3.5.5           | Grid interpolation of poloidal B field                              | 46         |
|---|-----|-----------------|---------------------------------------------------------------------|------------|
| 4 | Mei | rging a         | lgorithm 5                                                          | 51         |
|   | 4.1 | Introd          | uction                                                              | 51         |
|   | 4.2 | Partic          | le selection for merging                                            | 53         |
|   |     | 4.2.1           | Spatial proximity selection                                         | 54         |
|   |     | 4.2.2           | Species selection                                                   | 58         |
|   |     | 4.2.3           | Energy proximity selection                                          | 59         |
|   |     | 4.2.4           | Momentum unit vector selection                                      | 30         |
|   | 4.3 | Partic          | le merging and momentum partitioning                                | 31         |
|   | 4.4 | Bench           | mark of the merging algorithm                                       | 35         |
|   |     | 4.4.1           | Influence of merging candidates sample size on total energy and     | ~~         |
|   |     | 4.4.0           |                                                                     | 30         |
|   |     | 4.4.2           | Influence of $\Delta \Omega$ on super-particle $\Delta \varepsilon$ | 58         |
|   |     | 4.4.3           | Influence of $\Delta\Omega$ on super-particle momentum              | 71         |
|   |     | 4.4.4           | Conservation of energy in tokamak scenario                          | 72         |
|   | 4.5 | Super-          | particle collision events                                           | 77         |
|   | 4.6 | Bench           | mark of the super-particle ionisation                               | 78         |
|   |     | 4.6.1           | Unphysical merge test                                               | 31         |
|   | 4.7 | Comp            | ute resources comparison                                            | 32         |
|   | 4.8 | Conclu          | ision                                                               | 34         |
| 5 | Точ | vnsend          | avalanche benchmark                                                 | 36         |
|   | 5.1 | Introd          | uction                                                              | 36         |
|   | 5.2 | Paralle         | el plate experiment                                                 | 37         |
|   | 5.3 | Electro         | on-Hydrogen cross sections                                          | 38         |
|   | 5.4 | Numer           | rical experiment                                                    | 91         |
|   | 5.5 | Result          | s                                                                   | 94         |
|   |     | 5.5.1           | Influence of $\Delta t$ on obtained $\alpha$                        | 96         |
|   |     | 5.5.2           | Influence of $E/p$ on obtained $\alpha$                             | 96         |
|   |     | 5.5.3           | Discussion                                                          | 99         |
|   | 5.6 | Conclu          | lsion                                                               | 00         |
| 6 | ттғ | B-liko          | hreakdown scenario 10                                               | 12         |
| U | 61  | 0D ior          | pisation fraction equation 10                                       | <u>הי</u>  |
|   | 6.2 | Nume            | rical setup of the benchmark case                                   | ) <u>2</u> |
|   | 0.2 | 6 2 1           | Field configurations                                                | ) <u>1</u> |
|   |     | 622             | Electron - He impact cross sections                                 | 18         |
|   |     | 623             | Time stop restriction                                               | 11         |
|   | 63  | 0.2.0<br>Rogult | and discussions 11                                                  | 12         |
|   | 0.5 | 6 2 1           | Flootrop valueiting                                                 | LU<br>19   |
|   |     | 0.3.1           |                                                                     | 10<br>19   |
|   |     |                 | U.J.1.1 $V_{e,sim}$ Over time                                       | LJ<br>1.4  |
|   |     | 6 9 9           | 0.5.1.2 velocity distribution                                       | 14         |
|   |     | 0.3.2           | Growth rate comparison                                              | 10         |
|   |     | 0.3.3           | Charged particle spatial distribution                               | 18         |
|   |     |                 | <b>D.3.3.1</b> Backtraced connection length $L_{\rm bt}$            | 18         |
|   |     |                 | b.3.3.2 Internal fields                                             | 21         |

|              |                                                                  | 6.3.4 Extrapolation in time                                                              |  |  |  |
|--------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|--|
|              |                                                                  | 6.3.4.1 Time evolution of electron $V_{\text{par}}$                                      |  |  |  |
|              |                                                                  | 6.3.4.2 Formation of closed magnetic field                                               |  |  |  |
|              |                                                                  | 6.3.4.3 Extrapolation of $\mathbf{E}_{int}$                                              |  |  |  |
|              | 6.4                                                              | Conclusion                                                                               |  |  |  |
| 7            | Var                                                              | ants of ITER-like plasma breakdown 131                                                   |  |  |  |
|              | 7.1                                                              | ITER-like tokamak scenario variants                                                      |  |  |  |
|              | 7.2                                                              | $L_{\rm bt}$ comparison                                                                  |  |  |  |
|              | 7.3                                                              | Electron $V_{\text{par}}$ distribution                                                   |  |  |  |
|              | 7.3.1 Bimodal distribution fit of electrons' $f(V_{\text{Dar}})$ |                                                                                          |  |  |  |
|              | 7.4                                                              | Numerically fitted $\gamma$ coefficient                                                  |  |  |  |
|              | 7.5                                                              | Prediction of $t_{\rm crit.}$                                                            |  |  |  |
|              | 7.6                                                              | 0D L and $\langle L_{\rm bt, seed} \rangle$ comparison                                   |  |  |  |
|              | 7.7                                                              | Conclusion                                                                               |  |  |  |
| 8            | 8 Summary and outlook                                            |                                                                                          |  |  |  |
|              | 8.1                                                              | Parallel plate experiment benchmark                                                      |  |  |  |
|              | 8.2                                                              | ITER-like plasma initiation simulations                                                  |  |  |  |
|              | 8.3                                                              | Merging algorithm                                                                        |  |  |  |
|              | 8.4                                                              | Remark on ITER's plasma initiation                                                       |  |  |  |
| ۸            | Cro                                                              | s Sections 150                                                                           |  |  |  |
| A            | Cro                                                              | is sections 150                                                                          |  |  |  |
| в            | B Derivations                                                    |                                                                                          |  |  |  |
|              | B.1                                                              | Current Density in a Circular Loop                                                       |  |  |  |
|              | B.2                                                              | Expressing Vector Potential in Complete Elliptic Integral of $1^{st}$ & $2^{nd}$ Kind157 |  |  |  |
| $\mathbf{C}$ | Nui                                                              | nerical Fit Coefficients 159                                                             |  |  |  |
|              | C.1                                                              | $V_{\text{par}}$ distributions                                                           |  |  |  |
| D            | Cur                                                              | riculum Vitae 161                                                                        |  |  |  |
|              |                                                                  |                                                                                          |  |  |  |
| ъ.           |                                                                  |                                                                                          |  |  |  |

## Bibliography

164

IAS Series Band / Volume 57 ISBN 978-3-95806-730-1

