

Time-resolved and three-dimensional characterisation of magnetic states in nanoscale materials in the transmission electron microscope

Teresa Weßels

Schlüsseltechnologien / Key Technologies Band / Volume 265 ISBN 978-3-95806-685-4

Forschungszentrum Jülich GmbH Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen (ER-C) Physik Nanoskaliger Systeme (ER-C-1/PGI-5)

Time-resolved and three-dimensional characterisation of magnetic states in nanoscale materials in the transmission electron microscope

Teresa Weßels

Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies

Band / Volume 265

ISSN 1866-1807

ISBN 978-3-95806-685-4

Contents

List of Figures							
Li	st of [Tables	xv				
No	Nomenclature						
1.	Intro	troduction					
2.	2. Magnetism of nanoscale objects						
	2.1.	General magnetic concepts	5				
	2.2.	Basis of micromagnetism	7				
	2.3.	Artificial spin ice	10				
	2.4.	Magnetic vortex state	13				
		2.4.1. Description of a static magnetic vortex state	14				
		2.4.2. Magnetic vortex core dynamics	15				
	2.5.	Measurement magnetisation dynamics employing X-rays	18				
	2.6.	Summary	21				
3.	Con	ventional and magnetic imaging in transmission electron mi-					
	cros	сору	23				
	3.1.	Conventional transmission electron microscopy	23				
		3.1.1. Electron-specimen interactions	23				
		3.1.2. The transmission electron microscope	25				
	3.2.	Off-axis electron holography	30				
		3.2.1. Scattering of electrons by electromagnetic fields	30				
		3.2.2. Reconstruction of phase information	33				
		3.2.3. Experimental setup	36				
		3.2.4. Separation of electrostatic and magnetic contributions to					
		the phase	39				
		3.2.5. Model-based iterative reconstruction of magnetisation	40				
	3.3.	Lorentz microscopy	44				
	3.4.	Time-resolved microscopy	46				

	3.5.	Summ	nary	49				
4.	Qua	antitative measurement of virtual antivortices in artificial spin ice						
	4.1.	Theor	etical background of chiral ice	51				
	4.2.	.2. Sample fabrication						
	4.3.	Data analysis						
		4.3.1.	Automated detection of particles	58				
		4.3.2.	Removal of a phase ramp in the presence of magnetic stray					
			fields	60				
		4.3.3.	Image distortions and warping of phase images	62				
		4.3.4.	Stitching of multiple phase images	64				
		4.3.5.	Computation of magnetic induction from a known mag-					
			netisation distribution	67				
	4.4.	Initial	magnetic state of chiral ice	70				
	4.5.	Effect	of external magnetic field on chiral ice	74				
		4.5.1.	Magnetic fields required for switching of artificial spin ice					
			pattern	74				
		4.5.2.	Driving mechanism of magnetic reversal of nanomagnets	77				
	4.6.	Detection of virtual antivortices						
		4.6.1.	Magnetic state of saturated artificial spin ice	81				
		4.6.2.	Reconstruction of the magnetisation	87				
		4.6.3.	Determination of the three-dimensional magnetic induc-					
			tion from the reconstructed magnetisation	95				
		4.6.4.	Determination of virtual antivortex positions	98				
		4.6.5.	Effect of missing stray fields on the positions of virtual					
			antivortices	102				
	4.7.	Summ	nary	104				
5.	Mag	gnetic v	rortices in Py disks	105				
	5.1.	Sampl	le preparation and structure	105				
	5.2.	Recon	struction of the projected in-plane magnetic induction and					
		magne	etisation of magnetic vortices	108				
		5.2.1.	Influence of the reference hologram on phase reconstruction	n 108				
		5.2.2.	Off-axis electron holography of magnetic vortices and re-					
			construction of the projected in-plane magnetisation	109				
		5.2.3.	Comparison of reconstructed magnetisation with micro-					
			magnetic simulations	115				
		5.2.4.	Dependence of core shape on the thickness and diameter					
			of the disk	117				

	5.3.	Effect	of the three-dimensional shape of the disks	119
		5.3.1.	Shape variations of the Py disks	119
		5.3.2.	Movement of vortex core with sample tilt	121
		5.3.3.	Magnetic state of a cross-section	128
	5.4.	Summ	ary	130
6.	Dyn	amic i	maging using a fast readout detector in a transmission	
	elect	ron mi	croscope	131
	6.1.	Fabric	ation and expected features of the sample	132
	6.2.	Experi	mental setup for time-resolved microscopy	135
		6.2.1.	Overview of general setup	136
		6.2.2.	Experimental characterisation of the magnetising holder .	139
		6.2.3.	Simulations of electromagnetic fields induced by the RF	
			magnetising holder	145
	6.3.	Basics	of data analysis: Principal component analysis	148
	6.4.	Breath	ing-like behaviour of the vortex core during its gyration	150
		6.4.1.	Experimental details	150
		6.4.2.	Data analysis	152
		6.4.3.	Characteristics and consequences of the breathing-like be-	
			haviour	155
	6.5.	Resona	ance frequency of magnetic vortex cores	159
		6.5.1.	Vortex motion studied by scanning tunnelling X-ray mi-	
			croscopy	160
		6.5.2.	Vortex core motion studied by conventional Lorentz mi-	
			croscopy	163
		6.5.3.	Time-resolved electron microscopy using a delay line detector	:165
		6.5.4.	Comparison of the methods	170
	6.6.	Limita	tions of time-resolved microscopy with a delay line detector	172
		6.6.1.	Temporal resolution and applicable frequency range	172
		6.6.2.	Comparison of different approaches to achieve sub-ns tem-	
			poral resolution	175
	6.7.	Summ	ary	176
7.	Sum	mary a	nd outlook	177
A.	Sam	ple fab	rication	183
P	Data	anal	nic.	105
D.		Eindin	ono	100
	ט.ד. פיס	Dringia	and component analysis for poise reduction	100
	D.2.	1 mici		10/

Bibliography				
B.5. Calibration of DLD images	190			
B.4. Energy filter status during DLD experiments	188			
B.3. Data analysis for STXM	188			

Schlüsseltechnologien / Key Technologies Band / Volume 265 ISBN 978-3-95806-685-4

