

Investigations of the atmospheric OH, HO₂ and RO₂ radical chemical budgets and their impact on tropospheric ozone formation in a rural area in West-Germany in the JULIAC 2019 campaign

Changmin Cho

Energie & Umwelt / Energy & Environment Band / Volume 575 ISBN 978-3-95806-625-0

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Troposphäre (IEK-8)

Investigations of the atmospheric OH, HO₂ and RO₂ radical chemical budgets and their impact on tropospheric ozone formation in a rural area in West-Germany in the JULIAC 2019 campaign

Changmin Cho

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Contents

Dec	laration of Authorship3		
Abs	tract6		
Chapter 1 Introduction18			
1.1	Tropospheric OH, HO ₂ , and RO ₂ radical chemistry		
1.2	Detection of atmospheric OH, HO ₂ and RO ₂		
1.3 field (Measurement-model comparisons of ambient radical concentrations measured in campaigns in various environments25		
1.4	Calculation and measurement of ozone production rates in field campaigns		
1.5	Outline of the work		
Cha	pter 2. The Jülich Atmospheric Chemistry Project (JULIAC):		
Inve	estigation of photochemistry in rural air using the atmospheric		
simı	ılation chamber SAPHIR32		
2.1	The atmospheric simulation chamber SAPHIR		
2.2	The JULIAC campaign		
2.3	Instrumentation during the JULIAC campaign		
2.4 air sa	Characterization of the SAPHIR chamber with the JULIAC inlet system for ambient mpling		
2.5 rates	Evolution of trace gas concentrations and determination of net chemical production 40		

Chapter 3. Radical detection by laser induced fluorescence and characterization of a chemical modulation reactor (CMR) for the measurement of atmospheric concentrations of hydroxyl radicals... 43

	The Forschungszentrum Jülich LIF instrument for OH, HO ₂ and RO ₂ radical ration measurements
	Potential interferences in radical concentration measurements by the LIF nent
3.2.1	Potential interferences in the OH concentration measurement
3.2.2	Potential interferences in HO ₂ concentration measurements
3.2.3	Potential interference and limitation in RO ₂ concentration measurement 53
3.2.4 in the J	Corrections of background signals in HO ₂ and RO ₂ concentration measurements ULIAC campaign
	The Forschungszentrum Jülich LIF OH instrument with the chemical modulation (FZJ-LIF-CMR)
3.4	Characterization and test of the CMR system for clean air conditions58
3.4.1	OH transmission of the CMR without OH scavenger
3.4.2	Scavenging efficiency in the CMR
3.4.3	Scavenging of OH in the fluorescence detection cell
3.4.4 chambe	Performance of the LIF-CMR system in experiments with clean air in the SAPHIR er
3.4.5	Test of the CMR for known interferences
3.4.5.1	Interference from ozone photolysis
3.4.5.2	Interference from NO ₃
3.5	OH concentration measurements in ambient air applying chemical modulation 69
3.5.1 chemic	Sensitivity study of the influence of ambient conditions on the performance of the al modulation
3.5.1.1 efficien	Model description of the impact of ambient conditions on the OH transmission cy
3.5.1.2	Modelling the scavenging assuming homogeneous mixing of the scavenger 71
3.5.1.3	Modelling of the scavenging assuming inhomogeneous mixing of the scavenger 73
3.5.1.4	Model description of the OH transmission
3.5.2 during	Atmospheric OH radical measurements with the FZJ-LIF-CMR instrument the JULIAC campaign
3.5.2.1	Influence of ambient conditions

3.5.2.2	2 Comparison of OH concentrations measured in the JULIAC campaign
3.5.2.3	OH interferences determined by the CMR system during the JULIAC campaign81
3.6 LIF in	Comparison of the CMR system of the FZJ-LIF instrument with systems of other astruments and challenges of the application in specific environments
	pter 4. Measurements of radical and trace gas concentrations
and	experimental chemical budgets of OH, HO ₂ and RO ₂ radicals in
the J	IULIAC campaign88
4.1	$\label{lem:measurements} \begin{tabular}{ll} Measurements of radical and trace gas concentrations during the JULIAC campaign 88 \end{tabular}$
4.1.1	Meteorological and chemical conditions during the JULIAC campaign88
4.1.2 campa	OH, HO ₂ , and RO ₂ radical concentrations and OH reactivity during the JULIAC aign93
4.1.3	Nighttime observation of OH concentrations during the JULIAC 101
4.1.4	Data quality check of radical measurements
4.2	Chemical budget calculations
4.2.1	OH radical chemical budget103
4.2.2	HO ₂ radical chemical budget105
4.2.3	RO ₂ radical chemical budget
4.2.4	RO _X radical chemical budget107
4.2.5	Uncertainty of the calculated production and destruction rates108
4.3	Results of the OH, HO_2 , RO_2 and RO_X radical chemical budgets
4.3.1 mixin	Results of Case #1: Chemical radical budgets for conditions with different NO g ratios
4.3.2 ratios	Results of Case #2: Chemical radical budgets for conditions with low NO mixing and medium temperature
4.3.3 ratios	Results of Case #3: Chemical radical budgets for conditions with low NO mixing and high temperature
4.4	Discussion of the chemical budget analysis
4.4.1	Discussion of discrepancies in the radical budgets 120
4.4.2	Comparisons with other field campaigns investigating the radical budgets 122

Chapter 5. Investigation of tropospheric ozone formation in a rural
area in West-Germany in the JULIAC 2019 campaign126
5.1 Determination of the net odd oxygen (O_X) production rate from ozone and NO_2 concentration measurements
5.2 Calculation of the net odd oxygen (O_X) production rate from turnover rates of single reactions
Fig. 130 Results of the calculations of the net odd oxygen (O_X) production for measurements in the JULIAC campaign
5.4 Discussion of the net odd oxygen production for measurements in the JULIAC campaign
5.4.1 Comparison of results from the different methods for determining the net O_X production rate
5.4.2 Potential impact of additional O_X production or destruction reactions on the net O_X production rate
5.4.3 Potential simplification of the calculation of the net O_X production rate by using peroxy radical production rates determined from the measured OH reactivity140
5.4.4 NO dependency of the net O _X production rates
Chapter 6. Summary and conclusions145
Appendix151
Bibliography162

Energie & Umwelt / Energy & Environment Band / Volume 575 ISBN 978-3-95806-625-0

