

Towards 3D crosshole GPR full-waveform inversion

Amirpasha Mozaffari

Energie & Umwelt / Energy & Environment Band / Volume 574 ISBN 978-3-95806-623-6

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum Jülich GmbH Institut für Bio- und Geowissenschaften Agrosphäre (IBG-3)

Towards 3D crosshole GPR full-waveform inversion

Amirpasha Mozaffari

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 574

ISSN 1866-1793

ISBN 978-3-95806-623-6

Contents

Abstract								
Ζı	Zusammenfassung							
Ρı	Publications							
1	Intr	oductio	on la constant de la c	1				
	1.1	All is	about the earth and climate	1				
	1.2	Stater	nent of the problem	1				
	1.3	GPR	to bridge the gap	3				
	1.4	The n	eed for better tools	4				
	1.5	Objec	tive and thesis outline	6				
2	The	ory		8				
	2.1	Funda	mental of electromagnetic wave	8				
		2.1.1	Fundamental of electromagnetic	8				
		2.1.2	EM wave propagation	9				
		2.1.3	Reflection and refraction of the EM waves	10				
	2.2	Nume	rical modelling of GPR data	11				
		2.2.1	Finite-difference method	11				
		2.2.2	Finite-difference time-domain	12				
			2.2.2.1 Courant–Friedrichs–Lewy	12				
			2.2.2.2 Perfectly matched layer	13				
	2.3	Invers	ion and ill-posed problem	14				
		2.3.1	Inverse problem	14				
			2.3.1.1 State of information	14				
			2.3.1.2 Parametrisation and prior information	15				
			2.3.1.3 Forward problem	15				
			2.3.1.4 Defining the solution of the inverse problem	16				
	2.4	GPR	ray-based inversion	17				
	2.5	GPR :	full-wavefrom inversion	19				
		2.5.1	Linear regression	19				
		2.5.2	Linear regression coupled with physics-based forward model $\ .$.	20				
		2.5.3	Crosshole GPR FWI	21				
			2.5.3.1 FWI Pre-Processing	22				
			2.5.3.2 Forward Problem	24				
			2.5.3.3 Source wavelet estimation and correction	24				

		2.5.3.4 Inversion algorithm	26					
3	2.50	D crosshole GPR FWI with synthetic and measured data	30					
	3.1	Effects of the geometric spreading correction	30					
	3.2	Novel 2.5D crosshole GPR FWI	34					
	3.3	Case study 1: Realistic synthetic model	34					
		3.3.1 Model description and generating synthetic data	34					
		3.3.1.1 Starting models	35					
		3.3.2 Inversion strategies	36					
		3.3.2.1 Direct 2.5D FWI	37					
		3.3.2.2 Cascade 2.5D FWI	38					
		3.3.2.3 2.5D FWI with updated ε_r starting model	39					
	3.4	Case study 2: Experimental data	42					
		3.4.1 Test site description	42					
		3.4.2 FWI results	43					
	3.5	Conclusion	44					
4	3D (3D GPR antenna model and enhanced FWI with borehole fluid integration						
	4.1	Introduction	47					
	4.2	Finite-length antenna and borehole fluid models	49					
		4.2.1 3D Crosshole GPR antenna model	50					
		4.2.2 Antenna Validation	51					
	4.3	Borehole fluid effect (on travel-time and frequency spectrum)	53					
	4.4	FLA effect in wavelet angular-dependency	55					
		4.4.1 Synthetic study	55					
		4.4.2 Measured data study	55					
	4.5	3D Crosshole GPR modeling with FLA and borehole fluid	56					
		4.5.1 Synthetic simple subsurface model	56					
		4.5.2 Synthetic Widen test site model	56					
	4.6	2.5D crosshole GPR FWI with integrated borehole fluid	57					
		4.6.1 Synthetic data produced with water-filled borehole	59					
		4.6.2 Results	60					
	4.7	Conclusion	72					
5	High resolution 3D EM modelling: A new correction to use high-angle							
	cros	shole GPR traveltime data	73					
	5.1	Crosshole GPR high-angle problem	73					
	5.2	Novel pre-processing borehole-fluid effect correction resulting in						
		improve in apparent velocity values	76					
	5.3	3D FDTD modelling	79					
	5.4	Case study 1: simple layered subsurface model $\ldots \ldots \ldots \ldots \ldots$	80					
	5.5	Case study 2: realistic synthetic heterogeneous model	84					
	5.6	Conclusion	87					

6 Final conclusion and outlook 6.1 Conclusions 6.2 Outlook	93 93 95				
Acknowledgments					
cv					
List of Figures					
List of Tables					
Bibliography					

Energie & Umwelt / Energy & Environment Band / Volume 574 ISBN 978-3-95806-623-6

