

Trajectory Analysis on the Asian Tropopause Aerosol Layer (ATAL) based on Balloon Measurements at the Foothills of the Himalayas

Sreeharsha Hanumanthu

Energie & Umwelt / Energy & Environment Band / Volume 552 ISBN 978-3-95806-578-9

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Stratosphäre (IEK-7)

Trajectory Analysis on the Asian Tropopause Aerosol Layer (ATAL) based on Balloon Measurements at the Foothills of the Himalayas

Sreeharsha Hanumanthu

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 552

ISSN 1866-1793

ISBN 978-3-95806-578-9

Contents

	Abs	tract		xi
	Mot	ivation		xiii
1 Introduction				
	1.1	Meteorological background		
		1.1.1	Upper troposphere, lower stratosphere and tropopause	2
		1.1.2	Tropical tropopause layer	2
		1.1.3	Inter tropical convergence zone	4
		1.1.4	Tropical cyclones	6
	1.2 The monsoon systems		ionsoon systems	7
		1.2.1	The Asian summer monsoon	9
		1.2.2	South Asian summer monsoon	11
	1.3	Featur	res of the South Asian summer monsoon	14
		1.3.1	Onset and withdrawal	14
		1.3.2	Subtropical Jetstream	16
		1.3.3	Monsoon precipitation	16
		1.3.4	El Niño southern oscillation influence on Asian monsoon circulation .	18
		1.3.5	Rossby wave wave breaking and eastward eddy shedding	18
	1.4	Asian	summer monsoon anticyclone	19
	1.5	1.5 Asian tropopause aerosol layer		
		1.5.1	Measurements of the Asian Tropopause aerosol layer	25
		1.5.2	Chemical composition of Asian tropopause aerosol layer particles	28
		1.5.3	Asian tropopause aerosol layer and cirrus coexistence	29
	1.6	Overv	view of this thesis	30
2	Inst	rument	tation and the balloon campaigns in India and Nepal	33
	2.1	Overv	view of the balloon measurements in northern India 2016 and Nepal 2017	33
	2.2	Balloc	on-borne campaign in Naintal, India 2016	34
	2.3 The balloon payload		36	
		2.3.1	Vaisala RS41-SPG radiosonde	37
		2.3.2	Electrochemical concentration cell	38
		2.3.3	Cryogenic frostpoint hygrometer	39
		2.3.4	Compact optical back-scatter aerosol detector	39
	2.4	Detect	tion of the aerosol in the observed shortwave and long-wave channel .	41

	2.5	First results of measured ozone and water vapor in Nainital 2016	43			
3	Res	ults of COBALD Measurements				
	3.1	Color index and ice saturation	46			
	3.2	Data analysis and processing	48			
	3.3	Aerosol back-scatter measurements in August 2016	50			
4	Мос	Model description and meteorological conditions				
	4.1	The chemical Lagrangian model of the stratosphere	55			
	4.2	Trajectory calculations	56			
	4.3	Meteorological conditions of the Asian monsoon 2016	57			
		4.3.1 Monsoon anticyclone	57			
		4.3.2 El Niño southern oscillation status on 2016	67			
5	Мос	Model Results 69				
	5.1	Day-to-day variability of the Asian tropopause aerosol layer	69			
	5.2	Trajectory calculation and classification	71			
	5.3	Source regions of air masses contributing to the Asian tropopause aerosol layer	73			
		5.3.1 Sensitivity of strong-updraft location	73			
		5.3.2 Diversity in boundary layer sources	75			
		5.3.3 Sensitivity on backward trajectory length	77			
	5.4	Results of the back-trajectory analysis: Three cases	78			
		5.4.1 Case 1: Established Asian tropopause Aersol layer on 6 August 2016 .	78			
		5.4.2 Case 2: No Asian tropopause aerosol layer on 15 August 2016	83			
		5.4.3 Case 3: Typhoon influence on 18 August 2016	86			
	5.5	Results for all flights	89			
6	Dise	iscussion and summary 9				
	6.1	Discussion	97			
	6.2	Conclusions	98			
Α	Appendix 103					
	A.1	Measured raw signal of balloon soundings	103			
		A.1.1 Comparing measured raw data to binned data	104			
	A.2	Sensitivity of 40 day run in different time-lengths	105			
		A.2.1 Spatial view	105			
		A.2.2 Sensitivity in the air mass origin	111			
	A.3	40, 60 and 80 day trajectory variability in source regions	119			
Li	List of Abbreviations 1					
Ac	Acknowledgements					

Bibliography

127

Energie & Umwelt / Energy & Environment Band / Volume 552 ISBN 978-3-95806-578-9

