

Techno-ökonomische Bewertung von Verfahren zur Herstellung von Kraftstoffen aus H₂ und CO₂

Steffen Schemme

Energie & Umwelt / Energy & Environment Band / Volume 511 ISBN 978-3-95806-499-7

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Elektrochemische Verfahrenstechnik (IEK-14)

Techno-ökonomische Bewertung von Verfahren zur Herstellung von Kraftstoffen aus H₂ und CO₂

Steffen Schemme

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Inhaltsverzeichnis

1	Einleitung und Zielsetzung	1
	1.1 Motivation für die Untersuchung der Synthese von Elektrokraftstoffen	2
	1.2 Forschungsbedarf	5
	1.3 Zielsetzung dieser Arbeit	6
	1.4 Gliederung der Arbeit	7
2	Stand der Technik und Forschung	c
_	2.1 Kraftstoffbedarf	
	2.2 Konventionelle Kraftstoffe und Beimischungen	
	2.2.1 Allgemeine Anforderungen	
	2.2.2 Dieselkraftstoffe	
	2.2.3 Ottokraftstoffe	
	2.2.4 Flugturbinenkraftstoffe	
	2.2.5 Wichtige Schlussfolgerungen	
	2.3 Kommerzielle Herstellung nicht-erdölbasierter Kraftstoffe	
	2.4 Potenzielle strombasierte Kraftstoffe und Syntheserouten	
	2.4.1 Eduktbereitstellung	
	2.4.2 Synthesegasbereitstellung	
	2.4.4 Ether	
	2.4.5 Kohlenwasserstoffe	
	2.5 Techno-ökonomische Vergleiche nicht-kommerzieller Syntheserouten	
	2.6 Fazit	
3	Methodik der techno-ökonomischen Bewertung	
3	3.1 Bilanzraum der techno-ökonomischen Bewertung	
	3.2 Methodik der verfahrenstechnischen Bewertung	
	3.2.1 Modularität/Baukastenprinzip der Syntheserouten	
	3.2.2 Entwicklung der verfahrenstechnischen Prozesse	
	3.2.3 Kennzahlen zur Bewertung der Effizienz der Herstellungsverfahren	
	3.3 Methodik der ökonomischen Bewertung	
	3.3.1 Betriebskosten (OPEX)	79
	3.3.2 Investitionskosten (FCI)	
	3.3.3 Herstellkosten	85
4	Diskussion und Selektion zu vergleichender Syntheserouten	87
	4.1 Alkohole	88
	4.2 Ether	90
	4.3 Kohlenwasserstoffe	
	4.4 Ergebnis der Selektion	93
	4.5 Maximal mögliche Wirkungsgrade	93
5	Verfahrenstechnische Analyse der Syntheserouten	
_	5.1 Stoffdaten und thermodynamisches Modell für die Ethersynthese	
	5.1.1 Generierung fehlender und Anpassung vorhandener Stoffdaten der Ethersynthese .	
	1 0	

	5.1.2 Modellierung der Thermodynamik für die Ethersynthese	101		
	5.2 Stoffdaten für die Fischer-Tropsch-Synthese	116		
	5.3 Verfahrenstechnische Auslegung und Simulation der Teilprozesse	116		
	5.3.1 Methanol aus H ₂ und CO ₂			
	5.3.2 DME aus Methanol			
	5.3.3 Ethanol aus DME, H ₂ und CO ₂			
	5.3.4 1-Butanol aus Ethanol			
	5.3.5 2-Butanol aus 1-Butanol			
	5.3.6 iso-Oktanol aus 1-Butanol			
	5.3.8 Trioxan aus Formalin			
	5.3.9 OME ₁ aus Methanol und Formalin			
	5.3.10 OME ₃₋₅ aus Methanol und Formalin			
	5.3.11 OME ₃₋₅ aus OME ₁ und Trioxan			
	5.3.12 OME ₃₋₅ aus DME und Trioxan	143		
	5.4 Energetische Bilanzierung der Syntheserouten zu Alkoholen	145		
	5.5 Energetische Bilanzierung der Syntheserouten zu Ethern	147		
	5.6 Auslegung und Analyse von Chemieanlagen zur Kohlenwasserstoffsynthese	150		
	5.6.1 Kohlenwasserstoffe via Fischer-Tropsch-Verfahren			
	5.6.2 Kohlenwasserstoffe via Methanol-to-Gasoline-Verfahren	154		
	5.7 Zusammenfassung und Diskussion der Simulationsergebnisse	158		
6	Ökonomische Analysen der Syntheserouten	163		
•	6.1 Investitionskosten			
	6.1.1 Investitionskosten der Alkoholsynthesen			
	6.1.2 Investitionskosten der Ethersynthesen			
	6.1.3 Investitionskosten der Kohlenwasserstoffsynthesen	168		
	6.2 Herstellkosten der verschiedenen Elektrokraftstoffe	170		
	6.3 Sensitivitätsanalysen der Ergebnisse	172		
	6.3.1 Einfluss verschiedener Parameter auf die Herstellkosten	172		
	6.3.2 Einfluss der Anlagengröße auf die Herstellkosten	174		
7	Auswertung und Fazit	177		
	7.1 Auswertung der techno-ökonomischen Analysen	177		
	7.2 Anknüpfungspunkte für weiterführende Forschung			
	7.3 Vor- und Nachteile der verschiedenen Elektrokraftstoffe			
	7.4 Quintessenz und Schlussfolgerungen			
8	Zusammenfassung			
	-			
Literaturverzeichnis				
Symbol- und Abkürzungsverzeichnis				
Abbildungsverzeichnis				
	Tabellenverzeichnis			
An	nhang – Ergänzende Informationen	239		

Energie & Umwelt / Energy & Environment Band / Volume 511 ISBN 978-3-95806-499-7

