

IEK-3 Report 2019

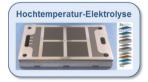
Maßgeschneiderte Energieumwandlung für nachhaltige Kraftstoffe Detlef Stolten, Bernd Emonts (Editors)

Energie & Umwelt / Energy & Environment Band / Volume 465 ISBN 978-3-95806-410-2

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Elektrochemische Verfahrenstechnik (IEK-3)

IEK-3 Report 2019

Maßgeschneiderte Energieumwandlung für nachhaltige Kraftstoffe


Detlef Stolten, Bernd Emonts (Editors)

Vo	rwort		2
1	Beiträge fü	r internationale Konferenzen	5
	1.1	Internationale Konferenz für Festkörper-Ionentransport SSI-21	6
	1.2	Vorbereitung, Durchführung und Resultat der TRENDS 2017	8
2	Aus- und Weiterbildung		13
	2.1	Ausbildung an Hochschulen	14
	2.2	Beiträge für die Information, Weiterbildung und Qualifizierung	19
3	Wissenschaftlich-technische Berichte		25
	3.1	Festoxid-Wandler	26
	3.2	Brenngaserzeugung und Systeme	38
	3.3	Hochtemperatur-Polymerelektrolyt-Brennstoffzellen	50
	3.4	Direktmethanol-Brennstoffzellen	68
	3.5	Wasserelektrolyse	76
	3.6	Verfahrens- und Systemanalyse	86
	3.7	Physikalisch-Chemische Grundlagen / Elektrochemie	102
4	Besondere Ergebnisse		113
	4.1	Jülicher Hochtemperatur-Brennstoffzelle besteht Langzeitversuch als zehn Jahren	
	4.2	Reduktion der Edelmetallbeladung	115
	4.3	Infrastrukturstudie	118
5	Ausblick auf neue FuE-Vorhaben		123
	5.1	Festoxidzellen für verringerte Betriebstemperaturen von 400 bis 60	00°C .124
	5.2	In-Situ-TEM Untersuchung von Elektrokatalysatoren	125
	5.3	Ansätze zur Entwicklung von Mitteltemperaturzellen und -systeme	n127
	5.4	Versorgungssysteme für alternative Kraftstoffe	129
	5.5	Bewertende Forschung an nachhaltigen Energiesystemen	136
6	Zahlen, Daten und Fakten		141
	6.1	Das Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik (IEK-3)	142
	6.2	Abteilungskompetenz im Überblick	145
	6.3	Publikationen, Technologietransfer und Ressourcen	149
	6.4	Preise und Auszeichnungen	152
	6.5	Gremienarbeit	153
	6.6	Beiträge zu Messen und Ausstellungen	160
	6.7	Anfahrtsbeschreibung	163
	6.8	Abkürzungsverzeichnis	166

Der Transportsektor hat einen erheblichen Minderungsbedarf bei dem aus der Verbrennung fossiler Kraftstoffe entstehenden Kohlendioxid. Mit der auf die Wasserelektrolyse fokussierten Technologieforschung sowie durch die technoökonomische Bewertung zukünftiger Verkehrslösungen hat das IEK-3 im Berichtszeitraum den technologischen Reifegrad der fortschrittlichen Wasserelektrolyse verbessert sowie bahnbrechende Erkenntnisse in der Prozesstechnik für die Erzeugung von synthetischen Kraftstoffen aus H₂ und CO₂ erarbeitet sowie eine detaillierte Analyse zum Infrastrukturvergleich der batterie- und brennstoffzellenbasierten Mobilität erstellt.

Die Wasserelektrolyse bei Temperaturen von etwa 70 °C erlaubt einen hochdynamischen Betrieb mit schnellen An- und Abfahrprozeduren. Der Reifegrad bei Elektrolyseuren mit Polymerelektrolytmembran oder Kalilauge ermöglicht den Aufbau großer Anlagen im MW-Maßstab. Derzeitige und zukünftige FuE-Arbeiten konzentrieren sich auf die Verbesserung der Leistungsfähigkeit, die Erhöhung der Lebensdauer und die Reduzierung der Investitions- und Betriebskosten. Durch das Ausrollen großerAnlagen zur elektrochemischen H2-Erzeugung wird die Integration in das Energiesystem erprobt.

Die Dampfelektrolyse bei Temperaturen bis etwa 800 °C ermöglicht die Nutzung überschüssiger Hochtemperaturwärme häufig aus Industrieprozessen. Der Reifegrad bei Elektrolyseuren mit Festoxidzellen orientiert sich an dem entsprechender Brennstoffzellen und ermöglicht den Anlagenaufbau im kW-Maßstab. Derzeitige und zukünftige FuE-Arbeiten konzentrieren sich auf die Auflösung leistungs- und lebensdauerreduzierender Materialveränderungen, die Ausgestaltung eines reversiblen Systems für Elektrolyse- und Brennstoffzellenbetrieb sowie die Erreichung anwendungsrelevanter Kostenziele.

Die gezielte Verarbeitung von Wasserstoff aus erneuerbaren Quellen und Kohlendioxid aus klimaneutralen Quellen liefert einen synthetischen, flüssigen Kraftstoff, der in seiner idealen Form heutiges Kerosin oder Diesel substituiert und gleichzeitig ohne schädliche Reststoffe verbrennt. Mit den Auslegungswerkzeugen und -methoden für die Gestaltung eines autothermen Reformers, WGS-Reaktors und Katalytbrenners soll ein Synthesereaktor konzipiert werden, der die beiden Ausgangsgase H2 und CO2 mit hoher Selektivität und geringen Umwandlungsverlusten zu einem Synfuel synthetisiert.

Energie & Umwelt / Energy & Environment Band / Volume 465 ISBN 978-3-95806-410-2

