


# Entwicklung von großflächigen PECVD-Prozessen zur kontrollierten, homogenen Abscheidung dünner Siliziumschichten für die Photovoltaik

Björn Olaf Grootoonk

Energie & Umwelt / Energy & Environment Band / Volume 462 ISBN 978-3-95806-402-7



Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung IEK-5 Photovoltaik

## Entwicklung von großflächigen PECVD-Prozessen zur kontrollierten, homogenen Abscheidung dünner Siliziumschichten für die Photovoltaik

Björn Olaf Grootoonk

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

## Inhaltsverzeichnis

| Ab          | Abstract                                                              |                                                     |    |  |  |  |  |
|-------------|-----------------------------------------------------------------------|-----------------------------------------------------|----|--|--|--|--|
| Kurzfassung |                                                                       |                                                     |    |  |  |  |  |
| 1           | Einleitung                                                            |                                                     |    |  |  |  |  |
| 2           | Physikalische Grundlagen und Herstellung von dünnen Siliziumschichten |                                                     |    |  |  |  |  |
|             | und                                                                   | l ihre Anwendung in Solarzellen                     | 19 |  |  |  |  |
|             | 2.1                                                                   | Dünnschicht-Silizium                                | 20 |  |  |  |  |
|             | 2.2                                                                   | Silizium-Dünnschichtsolarzellen                     | 23 |  |  |  |  |
|             | 2.3                                                                   | Plasmaunterstützte chemische Gasphasenabscheidung   | 25 |  |  |  |  |
|             | 2.4                                                                   | Optische Emission in Silan-Wasserstoff-Plasmen      | 29 |  |  |  |  |
| 3           | Experimentelle Methoden                                               |                                                     | 31 |  |  |  |  |
|             | 3.1                                                                   | Depositionsanlage                                   | 32 |  |  |  |  |
|             |                                                                       | 3.1.1 Large Area Deposition Apparatus (LADA)        | 32 |  |  |  |  |
|             |                                                                       | 3.1.2 Prozesskammer 1 mit planer Duschkopfelektrode | 32 |  |  |  |  |
|             | 3.2                                                                   | Substrat, Front-/Rückkontakt                        | 36 |  |  |  |  |
|             | 3.3                                                                   | Schichtdicke-Messungen                              | 38 |  |  |  |  |

11

#### Inhaltsverzeichnis

|                  | 3.4                                                                   | Raman-Spektroskopie                                                                                  | 38 |  |  |
|------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----|--|--|
|                  | 3.5                                                                   | Schichttiefen-aufgelöste Raman-Spektroskopie                                                         | 40 |  |  |
|                  | 3.6                                                                   | Opto-Elektronische Charakterisierung                                                                 | 40 |  |  |
|                  | 3.7                                                                   | Sekundärionen-Massenspektrometrie                                                                    | 43 |  |  |
| 4                |                                                                       | ßflächige Abscheidung mikrokristalliner Solarzellen mit einem<br>driggasfluss-Depositionsregime      | 45 |  |  |
|                  | 4.1                                                                   | Einleitung                                                                                           | 46 |  |  |
|                  | 4.2                                                                   | Einfluss der Plasma-Startbedingungen und der Gasflussgeometrie auf Niedriggasfluss-Depositionsregime | 47 |  |  |
|                  |                                                                       | 4.2.1 Einleitung                                                                                     | 47 |  |  |
|                  |                                                                       | 4.2.2 Experimentelle Bedingungen                                                                     | 47 |  |  |
|                  |                                                                       | 4.2.3 Experimentelle Ergebnisse                                                                      | 50 |  |  |
|                  |                                                                       | 4.2.4 Diskussion                                                                                     | 57 |  |  |
|                  |                                                                       | 4.2.5 Zusammenfassung                                                                                | 60 |  |  |
|                  | 4.3 Einfluss des Wasserstoffflusses, Pulverbildung und atmosphärische |                                                                                                      |    |  |  |
|                  |                                                                       | Kontaminationen auf Niedriggasfluss-Depositionsregime                                                | 61 |  |  |
|                  |                                                                       | 4.3.1 Einleitung                                                                                     | 61 |  |  |
|                  |                                                                       | 4.3.2 Experimentelle Ergebnisse                                                                      | 62 |  |  |
|                  |                                                                       | 4.3.3 Diskussion                                                                                     | 69 |  |  |
|                  | 4.4                                                                   | Zusammenfassung                                                                                      | 70 |  |  |
| 5                | Übe                                                                   | erwachung der Pulverbildung mittels Optischer Emissionsspektroskopie                                 |    |  |  |
|                  |                                                                       | Messung der selbstinduzierten Vorspannung in mikrokristallinen De-                                   |    |  |  |
| positionsregimen |                                                                       |                                                                                                      |    |  |  |

|   | 5.1 | Einleitung                                                                                     | 74  |
|---|-----|------------------------------------------------------------------------------------------------|-----|
|   | 5.2 | Experimentelle Ergebnisse                                                                      | 74  |
|   | 5.3 | Diskussion                                                                                     | 79  |
|   | 5.4 | Zusammenfassung                                                                                | 81  |
| 6 | Auf | oau und Entwicklung einer Experimentierelektrode                                               | 83  |
|   | 6.1 | Einleitung                                                                                     | 84  |
|   | 6.2 | Anlagenerweiterung und erste Elektrodenversion: Duschkopfelektrode                             | 84  |
|   | 6.3 | Zweite Elektrodenversion mit optischen Zugriffen                                               | 85  |
|   |     | 6.3.1 Einleitung                                                                               | 85  |
|   |     | 6.3.2 Experimentelle Ergebnisse und Diskussion                                                 | 86  |
|   |     | 6.3.3 Zusammenfassung                                                                          | 102 |
|   | 6.4 | Dritte und finale Elektrodenversion mit optischen Zugriffen und ortsaufgelöster Gaseinspeisung | 104 |
|   |     | 6.4.1 Ortsaufgelöste Gaseinspeisung                                                            | 104 |
|   |     | 6.4.2 Optische Zugriffe                                                                        | 104 |
|   |     | 6.4.3 Ortsaufgelöste optische Emissionsspektroskopie                                           | 110 |
|   |     | 6.4.4 Mit örtlich aufgelöster Gaseinspeisung abgeschiedenes mikrokristallines Silizium         | 116 |
|   | 6.5 | Zusammenfassung und Ausblick                                                                   | 127 |
| 7 | Zus | ammenfassung 1                                                                                 | 131 |
| 8 | Sch | ussfolgerung und Ausblick 1                                                                    | 135 |

### Inhaltsverzeichnis

| Publikationsverzeichnis | 139 |
|-------------------------|-----|
| Literaturverzeichnis    | 141 |
| Danksagung              | 153 |

Energie & Umwelt / Energy & Environment Band / Volume 462 ISBN 978-3-95806-402-7

