

Finite-Difference Time-Domain Simulations Assisting to Reconstruct the Brain's Nerve Fiber Architecture by 3D Polarized Light Imaging

Miriam Menzel

Schlüsseltechnologien / Key Technologies Band / Volume 188 ISBN 978-3-95806-368-6

Forschungszentrum Jülich GmbH Institut für Neurowissenschaften und Medizin Strukturelle und funktionelle Organisation des Gehirns (INM-1)

Finite-Difference Time-Domain Simulations Assisting to Reconstruct the Brain's Nerve Fiber Architecture by 3D Polarized Light Imaging

Miriam Menzel

Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies

Band / Volume 188

ISSN 1866-1807

ISBN 978-3-95806-368-6

Contents

1	Introduction		
I	THEORETICAL BACKGROUND	7	
2	Polarization Optics 2.1 Electromagnetic Field 2.2 Refraction and Attenuation 2.3 Birefringence 2.4 Diattenuation 2.5 Matrix Calculus	9 13 15 19 21	
3	Properties of Brain Tissue3.1Structure of Brain Tissue3.2Optical Properties of Brain Tissue	25 25 28	
II	MEASUREMENT & SIMULATION TECHNIQUES	35	
4	Polarimetric Measurements 4.1 Preparation of Brain Tissue 4.2 General Measurement Setup 4.3 General Signal Processing 4.4 Signal Analysis for the Polarimetric Measurements	37 37 39 41 42	
5	Two-Photon Fluorescence Microscopy (TPFM)5.1Preparation of Brain Tissue5.2Microscopic Measurement5.3Signal Analysis and Image Processing	53 53 54 56	
6	Finite-Difference Time-Domain (FDTD) Simulation6.1Yee's Algorithm6.2Unconditionally Stable Algorithm6.3TDME3D Software6.4Generation of Fiber Architectures	57 57 59 61 63	
111	EXPERIMENTAL STUDIES	67	
7	Characterization of the Optical Systems 7.1 General Properties of the Optical Systems 7.2 Filter Properties of the Large-Area Polarimeter	69 69 76	

8	Transmittance of Inclined Nerve Fibers	79			
	8.1 Transmittance of Flat and Steep Fiber Configurations	. 79			
	8.2 3D-Reconstruction of Transmittance Images	. 83			
	8.3 Transmittance vs. Fiber Inclination in TPFM Images	. 84			
	8.4 Discussion	. 86			
9	Diattenuation of Brain Tissue	89			
	9.1 Impact of Diattenuation on the Polarimetric Measurements	. 90			
	9.2 Study on Freshly Embedded Brain Sections	. 92			
	9.3 Long-Term Study	. 99			
	9.4 Discussion	. 102			
IV	FDTD SIMULATION STUDIES	105			
10	Modeling	107			
	10.1 Simulation of the Polarimetric Measurements	. 107			
	10.2 Geometries of the Simulated Fiber Configurations	. 131			
	10.3 Implementation of the Fiber Configurations in TDME3D	. 140			
	10.4 Evaluation of Simulation Parameters	. 146			
	10.5 Discussion	. 161			
11	Transmittance of Simulated Fiber Configurations	165			
	11.1 Transmittance of Inclined Fiber Bundles	. 166			
	11.2 Transmittance of Horizontal Fiber Bundles with Different Fiber Propertie	s 172			
	11.3 Transmittance of Horizontal Crossing vs. Vertical Fibers	. 178			
	11.4 Discussion	. 181			
12	Diattenuation of Simulated Fiber Configurations	185			
	12.1 Diattenuation of Inclined Fiber Bundles	. 186			
	12.2 Diattenuation of Horizontal Fiber Bundles with Different Fiber Properties	s 191			
	12.3 Diattenuation of Horizontal Crossing vs. Vertical Fibers	. 194			
	12.4 Discussion	. 195			
v	DISCUSSION & CONCLUSION	199			
13	Comparison of Experimental and Simulation Studies	201			
	13.1 Transmittance Effect	. 201			
	13.2 Diattenuation Effect	. 205			
	13.3 Overall Discussion	. 209			
14	Conclusion and Outlook	211			
Bil	bliography	215			
List of Publications List of Figures					
				Lis	List of Tables

List of Acronyms						
Li	List of Symbols					
A	APPENDICES					
Α	Sup	plementary Material for Polarization Optics	251			
	A.1	Derivation of the Wave Equation	. 251			
	A.2	Plane Waves in Homogeneous Materials	. 251			
	A.3	Derivation of the Refractive Index Ellipsoid for Uniaxial Materials $\ . \ . \ .$. 252			
	A.4	Birefringence and Dichroism for Uniaxial Absorbing Materials	. 254			
	A.5	Total Internal Reflection	. 261			
в	Opti	ical Properties of the Optical Systems	263			
	В.1	Optical Components of the Optical Systems	. 263			
	B.2	Contrasts Measured with the USAF Resolution Target	. 266			
	B.3	Characterization of the Filter Properties in the LAP \hfilter	. 267			
с	Supplementary Material for Diattenuation Studies					
	C.1	Correction of the 3D-PLI Fiber Orientations	. 271			
	C.2	Computation of the Diattenuation Impact on the Polarimetric Measure-				
		ments	. 271			
	C.3	Uncertainties of DI and 3D-PLI Direction Angles as a Function of Retar-				
		dation	. 276			
	C.4	Diattenuation Images of Five Sagittal Rat Brain Sections	. 276			
D	Sup	plementary Material for FDTD Simulations	279			
	D.1	Finite-Difference Approximation of Maxwell's Curl Equations	. 279			
	D.2	Modeling Uniform Illumination	. 280			
	D.3	Derivation of the Yee Cell Shift	. 281			
	D.4	Computation of the Light Intensity in the Image Plane	. 282			
	D.5	Derivation of the Fourier Transform of $\operatorname{circ}(\mathbf{r})$. 283			
	D.6	Representation of the Light Intensity in 3D-PLI Simulations as Fourier	004			
	D 7	Derivation of the Frequencies Diffraction Dettern	. 284 295			
	D.7	Fourier Coefficient Maps of Higher Orders	. 200 286			
	D.0	Transmittance Profiles of the USAF Resolution Target Simulated for the	. 200			
	D.0	Polarizing Microscope	288			
	D.10	Transmittance Images and Scattering Patterns for the Hexagonal Grid of	. 200			
		Fibers	. 289			
	D.11	Transmittance and Diattenuation Curves for Different Wavelengths	. 293			
	D.12	2 Diattenuation Simulated for the Imaging System of the Large-Area Po-				
		larimeter	. 294			

Schlüsseltechnologien / Key Technologies Band / Volume 188 ISBN 978-3-95806-368-6

