

Establishment of Bacterial Microcompartments in the Industrial Production Strain *Corynebacterium glutamicum*

Isabel Huber

Schlüsseltechnologien / Key Technologies Band / Volume 165 ISBN 978-3-95806-302-0

Mitglied der Helmholtz-Gemeinschaft

Forschungszentrum Jülich GmbH Institut für Bio-und Geowissenschaften Biotechnologie (IBG-1)

Establishment of Bacterial Microcompartments in the Industrial Production Strain *Corynebacterium glutamicum*

Isabel Huber

Schriften des Forschungszentrums Jülich Reihe Schlüsseltechnologien / Key Technologies

Band / Volume 165

ISSN 1866-1807

ISBN 978-3-95806-302-0

Content

Summary		1
Zusamme	enfassung	2
1 BAC	CKGROUND	3
1.1	Bacterial microcompartments	4
1.1.1	Catabolic processes within metabolosomes	5
1.1.2	Microcompartment shell assembly	7
1.1.3	Protein targeting to microcompartments	9
1.1.4	Shell protein pores and transport mechanisms through the shells	10
1.2	Prospects of BMCs for metabolic engineering and pathway enhancement	12
1.2.1	Compartmentalization and scaffolding for synthetic biology approaches	12
1.2.2	Synthetic BMC shell production in heterologous hosts	13
1.2.3	Construction of an ethanol production chamber in E. coli	14
1.3	The potential of Corynebacterium glutamicum for BMC establishment	15
1.3.1	C. glutamicum as industrial production strain	15
1.3.2	Production of the high value chemical itaconate with C. glutamicum	16
1.3.3	Methanol as alternative carbon source for C. glutamicum	17
1.3.4	Ethanol production with C. glutamicum	19
1.4	Goals and strategies of this work	20
2 MA1	ERIAL AND METHODS	21
2.1	Materials, equipment and chemicals	22
2.2	Media and antibiotics	22
2.3	Bacterial strains, plasmids and primers	24
2.4	DNA techniques	30
2.4.1	Isolation of plasmid DNA	30
2.4.2	DNA concentration measurement	30
2.4.3	Agarose gel electrophoresis	30
2.4.4	Polymerase chain reaction	31
2.4.5	Restriction enzyme digests	31
2.4.6	Cloning of plasmid vectors	31
2.4.7	Gibson Assembly	32
2.4.8	Control of correct plasmid assembly	33
2.4.9	Sequencing	33
2.5	Bacterial strains and growth conditions	34
2.5.1	Generation of E. coli calcium chloride competent cells	34
2.5.2	Transformation of calcium chloride competent <i>E. coli</i> DH5α cells	34

	2.5.3	Glycerin cultures for maintenance of E. coli transformants	34
	2.5.4	Generation of C. glutamicum competent cells	34
	2.5.5	Transformation of C. glutamicum via electroporation	35
	2.5.6	Glycerin cultures for long term storage of C. glutamicum strains	35
	2.5.7	Construction of chromosomal integrations and exchanges	36
	2.5.8	Preculture handling for C. glutamicum	36
	2.5.9	Cultivation for ethanol production	36
	2.5.10	Cultivation in a microbioreactor system (BioLector)	36
2.	6 Pr	otein biochemical methods	38
	2.6.1	Cell lysis methods	38
	2.6.2	Enzymatic assays	38
	2.6.3	Compartment purification	42
	2.6.4	SDS polyacrylamide gel electrophoresis (SDS-PAGE)	43
	2.6.5	HPLC analysis of itaconate production	45
	2.6.6	HPLC analysis of ethanol production	46
	2.6.7	Fluorescence microscopy	46
	2.6.8	Transmission electron microscopy	46

49

81

3 RESULTS

3.1 Assembly of 1,2-PD utilization metabolosome shells 50 3.1.1 C. freundii pdu operon design for expression in C. glutamicum 50 312 Tracking compartment assembly by fluorescence reporter systems 50 3.1.3 Analysis of a C. glutamicum (mCherry)PduABJKNUT production strains 52 3.1.4 Importance of protein stoichiometry on compartment assembly 54 3.1.5 Growth of plasmid-based BMC production strains 58 3.1.6 Chromosomal integration of the pduABJknt shell operon 60 3.1.7 Approaches for BMC purification from C. glutamicum 62 3.1.8 Comparison of disruption methods for C. glutamicum 64 3.2 Targeting of proteins of interest into BMCs 67 3.2.1 C-terminal targeting to BMCs with native and non-native encapsulation peptides 67 3.2.2 Implementation of protein scaffolds for BMC targeting 68 3.2.3 70 Activity of ethanol production enzymes enhanced by C-terminal targeting 72 3.3 Targeting proteins of interest onto Pdu-based scaffolds 72 3.3.1 PduA and PduJ form filaments in C. glutamicum 332 N-terminal targeting peptides recruit eYFP to PduA scaffolds 72 3.3.3 C-terminal targeting to PduA is possible by using PDZ and GBD interactions 74 3.4 76 Towards a biotechnological application of BMCs 3.4.1 Ethanol production within BMCs in C. glutamicum 76 3.4.2 Methanol consumption within BMCs 80

3.4.3 Establishing itaconate production within Pdu shells

4	DIS	CUSSION	93
4	.1	Assembly of Pdu metabolosome shells	94
	4.1.1	Optimization of the operon shell design	94
	4.1.2	Growth of C. glutamicum during BMC formation	96
	4.1.3	Methodical limitations concerning the validation of BMC assembly	98
4	.2	Targeting of proteins of interest to the Pdu shell protein	101
	4.2.1	Evaluation of native BMC-derived encapsulation peptides	101
	4.2.2	Evaluation of C-terminal BMC-derived encapsulation peptides	102
	4.2.3	Implementation of protein scaffolds for BMC targeting	103
	4.2.4	Issues with the N-terminal targeting of pathway enzymes	104
4	.3	Pathway enhancement with Pdu BMCs	106
	4.3.1	Transport mechanisms through the BMC shells	106
	4.3.2	Growth of BMC strains coproducing pathway enzymes	107
	4.3.3	Difficulties and directions for ethanol production in BMCs	108
	4.3.4	Difficulties and directions for itaconate production in BMCs	109
	4.3.5	Difficulties and directions for methanol utilization in BMCs	110
4	.4	Pathway enhancement with enzyme scaffolds	112
4	.5	Future prospects for the Pdu application in C. glutamicum	114

5 REFERENCES

XI

6	API	PENDIX	XVIII
6	6.1	Supplemental material – Construction of plasmids	XVIII
6	6.2	Supplemental material – pMKEx1 vector	XXVII
6	6.3	Supplemental material – TEM of Pdu production strains	XXIX
6	6.4	Supplemental material – Ethanol production	XXXII
6	6.5	Supplemental material – Itaconate production	XXXIV

Schlüsseltechnologien / Key Technologies Band / Volume 165 ISBN 978-3-95806-302-0

