Modelling of High Temperature Polymer Electrolyte Fuel Cells

Qing Cao

Energie & Umwelt/ Energy & Environment Band/Volume 389 ISBN 978-3-95806-263-4

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Electrochemical Process Engineering (IEK-3)

Modelling of High Temperature Polymer Electrolyte Fuel Cells

Qing Cao

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 389

ISSN 1866-1793

ISBN 978-3-95806-263-4

Contents

1	Introduction					
	1.1	Motivations and objectives	9			
	1.2	Organization of this thesis	12			
	1.3	.3 Working principle and components of the HT-PEFC				
	1.4	.4 Thermodynamic and polarization curve				
	1.5	.5 Classification of the flow of an HT-PEFC				
	1.6	Literature review	23			
		1.6.1 Modelling work	23			
2	Modelling aspects					
	2.1	Assumptions and computational domain	30			
		2.1.1 Assumptions	30			
		2.1.2 Computational domain and operating conditions	31			
	2.2	Basic model (model I)				
	2.3	Macro-homogeneous model (model II)				
	2.4	Water transfer model (model III)				
	2.5	Multicomponent diffusion model using Maxwell-Stefan equations (model IV) 57				
	2.6	Discretization methods				
3	Numerical results					
	3.1	Mesh independence study				
	3.2	? Simulations with the single channel pair				
		3.2.1 Basic model (model I)	68			
		3.2.2 Compression effect of GDL (model I)	87			
		3.2.3 Multicomponent diffusion model (model IV)	97			
	3.3	Simulations with the single cell with serpentine flow field				
		3.3.1 Basic model (model I) and Macro-homogeneous model (model II)	107			
		3.3.2 Water transfer model (model III)	116			
4	Disc	cussion	125			

5 Conclusion

6	6 Appendix					
	6.1 Experimental data for the parameter fitting of Model I and II					
	6.2	5.2 Experimental data for the parameter fitting of Model III				
	6.3 Derivation of the matrix form of Maxwell-Stefan relationship					
		6.3.1	Basic equaitons	134		
		6.3.2	Molar-based matrix form of Maxwell-Stefan relationship	136		
		6.3.3	Mass-based matrix form of Maxwell-Stefan relationship with respect of			
			gradient of molar fraction	138		
		6.3.4	Relationship between gradient of mass fraction and gradient of molar			
		fraction	fraction	140		
		6.3.5	Mass-based matrix form of Maxwell-Stefan relationship with respect of			
			gradient of mass fraction	141		
References						
Acknowledgments						

Energie & Umwelt/ Energy & Environment Band/Volume 389 ISBN 978-3-95806-263-4

