Microstructure Evolution of Laves Phase Strengthened Ferritic Steels for High Temperature Applications

Jennifer Katharina Lopez Barrilao

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research (IEK) Microstructure and Properties of Materials (IEK-2)

Microstructure Evolution of Laves Phase Strengthened Ferritic Steels for High Temperature Applications

Jennifer Katharina Lopez Barrilao

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 375

ISSN 1866-1793

ISBN 978-3-95806-231-3

Contents

Intr	roduction						
1.1	Background and Motivation						
1.2	Outline						
Scie	entific Background						
2.1	State of the art 9-12% Cr steels $\ldots \ldots 5$						
2.2	Crofer [®] 22 APU and Crofer [®] 22 H						
2.3	Strengthening Particles						
	2.3.1 Carbide and Nitride						
	2.3.2 Laves Phase						
	2.3.3 σ -Phase						
	2.3.4 Z-Phase 11						
2.4	Crystallographic Defects						
	2.4.1 0-dimensional Lattice Defects						
	2.4.2 1-dimensional Lattice Defects						
	2.4.3 2-dimensional Lattice Defects						
2.5	Ageing Processes in Solids						
	2.5.1 Diffusion						
	2.5.2 Precipitation						
	2.5.3 Structural Ageing						
2.6	Phase Diagrams						
2.7	Mechanical Properties						
2.8	Transmission Electron Microscopy (TEM) 29						
	2.8.1 Fundamental Principles						
	2.8.2 Architecture						
	 Intr 1.1 1.2 Scie 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 						

		2.8.3 Imaging	32			
		2.8.4 General Sample Preparation	34			
	2.9	Scanning Electron Microscopy (SEM)	37			
3	Exp	xperimental				
	3.1	Materials and Production	39			
	3.2	2 Annealing Experiments and Sample Preparation				
	3.3	Microstructural Analysis	41			
		3.3.1 HR-FESEM and Image Analysis	41			
		3.3.2 STEM	44			
	3.4	Thermodynamic Modelling of Phase Diagrams	44			
4	Res	Results and Discussion				
	4.1	Previous Studies	45			
	4.2	Selection of Sample Preparation	47			
	4.3	Thermodynamic Modelling and Verification by Electron Microscopy Ex-				
		amination	48			
		4.3.1 Thermodynamic Modelling	48			
		4.3.2 STEM Examination at 600 $^{\circ}\mathrm{C}$ and 650 $^{\circ}\mathrm{C}$	50			
		4.3.3 Chemical Composition at 600 $^{\circ}\mathrm{C}$ and 650 $^{\circ}\mathrm{C}$ $\hfill \ldots$.	60			
		4.3.4 Examination of Phase Structure	70			
	4.4	Particle Evolution at 600 °C and 650 °C \hdots	73			
		4.4.1 Particle Diameter Evolution	76			
		4.4.2 Evolution of Particle Size Distribution	77			
	4.5	Summary and Conclusion:				
		Particle Verification and Evolution	86			
	4.6	Microstructure Evolution at 650 $^{\circ}\mathrm{C}$	87			
		4.6.1 Sub-Grain Structure Evolution	87			
		4.6.2 Particle-Free Zone Evolution	87			
	4.7	Summary and Conclusion:				
		Microstructure Evolution	98			

5 Overall Conclusion and Outloo

101

Α	Appendix:
---	-----------

	Thermodynamic Modelling							
	and Verification by Electron							
	Microscopy Examination							
	A.1	STEM	Examination at 600 $^{\circ}\mathrm{C}$ and 650 $^{\circ}\mathrm{C}$	103				
	A.2	Phase	Distinction	105				
		A.2.1	EDX measurement $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	105				
		A.2.2	$Diffraction\ measurement\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$	107				
в	B Particle Evolution							
\mathbf{C}	C Microstructure Evolution							
	C.1	Particl	e-Free Zone Evolution	111				
Bi	Bibliography							
Li	List of Figures							
Li	List of Tables							

Energie & Umwelt/ Energy & Environment Band/Volume 375 ISBN 978-3-95806-231-3

