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On current large-scale HPC systems often occur |/O patterns that produce a high load on the
file system during access to checkpoint and restart files. Applications running on systems with
distributed memory will often perform such |/0 individually by creating task-local file objects
on the file system. At large scale, these task-local I/0 patterns impose substantial stress on the
metadata management components of the 1/0 subsystem. Such metadata contention occurs
also at the startup of dynamically linked applications while searching for library files.

The reason for these limitations is that the serial /0 components of the operating system
do not take advantage of application parallelism. To avoid the above bottlenecks, this work
describes two novel approaches which exploit the knowledge of application parallelism, the
underlying 1/0 subsystem structure, the parallel file system configuration, and the network
between HPC-system and /O system to coordinate and optimize access to file-system objects.
The underlying methods are implemented in two tools, SIONIlib and Spindle, which add layers
between the parallel application and the corresponding POSIX-based standard interfaces of the
operating system, eliminating the need for modifying the underlying system software.

SIONIib is already applied in applications to implement efficient checkpointing and is also
integrated in the performance-analysis tools Scalasca and Score-P to efficiently store trace
data. Latest benchmarks on the Blue Gene/Q in Julich demonstrate that SIONIib solves the
metadata problem at large scale by running efficiently up to 1.8 million tasks while maintaining
high 1/0 bandwidths of 60-80% of file-system peak with a negligible file-creation time. The
scalability of Spindle could be demonstrated by running a benchmark on a cluster of Lawrence
Livermore National Laboratory at large scale. The results show that the startup of dynamically
linked applications is now feasible on more than 15000 tasks, whereas the overhead of Spindle
is nearly constantly low.

With SIONIlib and Spindle, this work demonstrates how scalability of operating system
components can be improved without modifying them and without changing the 1/0 patterns
of applications. In this way, SIONlib and Spindle represent prototype implementations of
functionality needed by next-generation runtime systems.

This publication was edited at the Jilich Supercomputing Centre (JSC) which is an integral
part of the Institute for Advanced Simulation (IAS). The IAS combines the Jilich simulation
sciences and the supercomputer facility in one organizational unit. It includes those parts of
the scientific institutes at Forschungszentrum Jilich which use simulation on supercomputers
as their main research methodology.
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