1
—
I I e e e e

20,000
100,000

Efficient Task-Local /O Operations of Massively
Parallel Applications

Wolfgang Frings

A)0LICH

FORSCHUNGSZENTRUM

Member of the Helmholtz Association

Forschungszentrum Jilich GmbH
Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)

Efficient Task-Local 1/0 Operations of Massively
Parallel Applications

Wolfgang Frings

Schriften des Forschungszentrums Jiilich
IAS Series Band 30

ISSN 1868-8489 ISBN 978-3-95806-152-1

Contents

1

Introduction
1.1 Parallel Computing

1.1.1
1.1.2

Parallel architectures
Parallel software

1.2 Parallel/O

1.2.1
1.2.2
123

Characteristics
Accessmethods
Parallel file systems

1.3 Parallel Task-Local /O
Serial I/O based on the POSIX I/O interface

1.3.1
1.3.2
133

Checkpointing with task-local /O . .
Performance-tools using task-local I/O

1.4 Dynamic Linking and Loading

1.4.1
1.4.2
143

Dynamic shared objects
The dynamic loader.
Optimization of symbol binding . . .

1.44 Dynamic linking and loading in parallel applications
1.4.5 Dynamic loading at runtime and within scripting languages
1.5 Contribution of this Thesis

1/0 Limitations at Large Scale
2.1 Schematic View of the Parallel I/O Data Flow
2.2 Scalability of Parallel Task-Local /O

2.2.1
222

Parallel file creation
File management

2.3 Scalability of Parallel Loading

2.3.1
232
233

SIONIib

Scalingissues
Dynamic loading on a Linux cluster .
Dynamic loading on JUQUEEN . . .

3.1 File Container for Task-Local Data
3.2 Scalability of Shared-FileI/O

3.2.1
322
323
324

File locking (GPFS)
Number of tasks per files
Shared files and data size
Shared files and threaded applications

AN W N = -

13
17
17
18
20
21
22
23
24
25
26
27

29
29
31
31
33
34
34
36
38

43
43
45
45
47
49
50

ix

Contents

3.3 Objectivesand Strategy 51
3.4 Separationof /O Streams 53
3.5 FileOrganization 54
3.6 Application Requirements L. 57
3.7 Software Layersand APIs 58
3.7.1 Parallel write 59

372 Parallelread 60

373 Serial write 60

374 Serialread 61

3.7.5 Fortraninterface oo oo 61

3.7.6 Commandline Utilities 62

3.8 Coalescing /O 62
3.9 Key-Value Containers 63
3.10 SupportforTools 65
3.10.1 Generic API 65
3102 Reinit 66
3.10.3 Mappedopen 67

3.11 Related Work 68
4 Evaluation of Task-Local 1/0 with SIONIib 71
4.1 Architecture and I/O-infrastructure of Blue Gene/Q 71
4.1.1 I/O-Forwarding on Blue Gene/Q 72

42 T/OBenchmarks 74
4.2.1 Parallel filecreation 75

422 Baselinemeasurements et e 76

4.2.3 Alignmentand filelocking 78

424 Sharedfile/Owith SIONLib 80

425 Scalability 82

42.6 Smalldatal/Oatlargescale 84

4.3 File System as a Shared Resource 86
44 Applications 87
44.1 Checkpointingin MP2C L. 88

442 Trace-file generation with Scalasca 94

5 Spindle 97
5.1 Objectives and Overall Architecture 97
5.2 Client Adapter. o i e e 99
53 LoadServer 100
5.3.1 Operationo e 101

5.32 Memoryoverhead 103

5.4 Overlay Network 104
5.5 Bootstrapping and Bulk Preloading 106
5.6 Python Module Loading, 106
5.7 Flexible Caching Algorithms 107
5.7.1 Variable network topologies 109

Contents

5.7.2 Optimization for Blue Gene/Q architecture 110

5.8 RelatedWork 111
5.8.1 Parallel filesystem 111

5.8.2 Caching and staging solutions 112

5.8.3 Peer-to-Peersolutions 112

5.8.4 Loading as a parallel service 113

6 Evaluation of Parallel Loading with Spindle 115
6.1 Simple Loader Benchmark 115
6.2 Pynamic 116
6.3 Scaling Spindle on JUROPA L. 117
6.4 Scaling Spindleon Sierra 120

6.5 Memoryoverheadof Spindleo 123

7 Conclusion & Outlook 125
Contribution to Publications 129
Glossary 131
Bibliography 133

Xi

On current large-scale HPC systems often occur |/O patterns that produce a high load on the
file system during access to checkpoint and restart files. Applications running on systems with
distributed memory will often perform such |/0 individually by creating task-local file objects
on the file system. At large scale, these task-local I/0 patterns impose substantial stress on the
metadata management components of the 1/0 subsystem. Such metadata contention occurs
also at the startup of dynamically linked applications while searching for library files.

The reason for these limitations is that the serial /0 components of the operating system
do not take advantage of application parallelism. To avoid the above bottlenecks, this work
describes two novel approaches which exploit the knowledge of application parallelism, the
underlying 1/0 subsystem structure, the parallel file system configuration, and the network
between HPC-system and /O system to coordinate and optimize access to file-system objects.
The underlying methods are implemented in two tools, SIONIlib and Spindle, which add layers
between the parallel application and the corresponding POSIX-based standard interfaces of the
operating system, eliminating the need for modifying the underlying system software.

SIONIib is already applied in applications to implement efficient checkpointing and is also
integrated in the performance-analysis tools Scalasca and Score-P to efficiently store trace
data. Latest benchmarks on the Blue Gene/Q in Julich demonstrate that SIONIib solves the
metadata problem at large scale by running efficiently up to 1.8 million tasks while maintaining
high 1/0 bandwidths of 60-80% of file-system peak with a negligible file-creation time. The
scalability of Spindle could be demonstrated by running a benchmark on a cluster of Lawrence
Livermore National Laboratory at large scale. The results show that the startup of dynamically
linked applications is now feasible on more than 15000 tasks, whereas the overhead of Spindle
is nearly constantly low.

With SIONIlib and Spindle, this work demonstrates how scalability of operating system
components can be improved without modifying them and without changing the 1/0 patterns
of applications. In this way, SIONlib and Spindle represent prototype implementations of
functionality needed by next-generation runtime systems.

This publication was edited at the Jilich Supercomputing Centre (JSC) which is an integral
part of the Institute for Advanced Simulation (IAS). The IAS combines the Jilich simulation
sciences and the supercomputer facility in one organizational unit. It includes those parts of
the scientific institutes at Forschungszentrum Jilich which use simulation on supercomputers
as their main research methodology.

IAS Series

Volume 30 ’J JULlCH

ISBN 978-3-95806-152-1 FORSCHUNGSZENTRUM

	Introduction
	Parallel Computing
	Parallel architectures
	Parallel software

	Parallel I/O
	Characteristics
	Access methods
	Parallel file systems

	Parallel Task-Local I/O
	Serial I/O based on the POSIX I/O interface
	Checkpointing with task-local I/O
	Performance-tools using task-local I/O

	Dynamic Linking and Loading
	Dynamic shared objects
	The dynamic loader
	Optimization of symbol binding
	Dynamic linking and loading in parallel applications
	Dynamic loading at runtime and within scripting languages

	Contribution of this Thesis

	I/O Limitations at Large Scale
	Schematic View of the Parallel I/O Data Flow
	Scalability of Parallel Task-Local I/O
	Parallel file creation
	File management

	Scalability of Parallel Loading
	Scaling issues
	Dynamic loading on a Linux cluster
	Dynamic loading on JUQUEEN

	SIONlib
	File Container for Task-Local Data
	Scalability of Shared-File I/O
	File locking (GPFS)
	Number of tasks per files
	Shared files and data size
	Shared files and threaded applications

	Objectives and Strategy
	Separation of I/O Streams
	File Organization
	Application Requirements
	Software Layers and APIs
	Parallel write
	Parallel read
	Serial write
	Serial read
	Fortran interface
	Commandline Utilities

	Coalescing I/O
	Key-Value Containers
	Support for Tools
	Generic API
	Reinit
	Mapped open

	Related Work

	Evaluation of Task-Local I/O with SIONlib
	Architecture and I/O-infrastructure of Blue Gene/Q
	I/O-Forwarding on Blue Gene/Q

	I/O Benchmarks
	Parallel file creation
	Baseline measurements
	Alignment and file locking
	Shared file I/O with SIONlib
	Scalability
	Small data I/O at large scale

	File System as a Shared Resource
	Applications
	Checkpointing in MP2C
	Trace-file generation with Scalasca

	Spindle
	Objectives and Overall Architecture
	Client Adapter
	Load Server
	Operation
	Memory overhead

	Overlay Network
	Bootstrapping and Bulk Preloading
	Python Module Loading
	Flexible Caching Algorithms
	Variable network topologies
	Optimization for Blue Gene/Q architecture

	Related Work
	Parallel file system
	Caching and staging solutions
	Peer-to-Peer solutions
	Loading as a parallel service

	Evaluation of Parallel Loading with Spindle
	Simple Loader Benchmark
	Pynamic
	Scaling Spindle on JUROPA
	Scaling Spindle on Sierra
	Memory overhead of Spindle

	Conclusion & Outlook
	Contribution to Publications
	Glossary
	Bibliography
	Titelei IAS 30.pdf
	Leere Seite

	Leere Seite

