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ABSTRACT

Inaccurate representation of mixing in chemistry transport models strongly
influence the time evolution of all relevant trace gases and, in particular, the
qualitative determination of the stratosphere-troposphere exchange (STE). For
this reason, a physics-based numerical representation of mixing is required but
remains an uncertain piece for the atmospheric transport models. However, the
Lagrangian view of transport offers an alternative to exploit the numerical dif-
fusion for parametrization of the physical mixing rather than to find ways of
avoiding this effect.

Using the standard version of the Chemical Lagrangian Model of the Strato-
sphere (CLaMS) with mixing parametrization triggered by strong flow deforma-
tions, a remarkable Sudden Stratospheric Warming (SSW) case is investigated to
reexamine transport, especially mixing, through analyzing the variation of strato-
spheric composition and of the tracer-tracer correlations. The case study of SSW
demonstrates the intensified sub-seasonal variability of polar descent and tropical
upwelling, which further motivates the study of the long-term impact of SSWs
on the variability of the water vapor in the tropical lower stratosphere based on
a CLaMS 35-year run. A sub-seasonal SSW-associated dehydration effect in
the tropical lower stratosphere modulated by the two quasi-biennial oscillation
(QBO) phases is found. The cooling and drying at the tropical tropopause, as a
result of enhanced breaking of planetary waves in the subtropics during SSWs,
is more intensive in the easterly QBO phase than in the westerly QBO phase.
The extra-dehydration due to SSWs as well as the decadal variations of SSW

frequency has potentially contributed to the long-term variability of water vapor



in the lower stratosphere.

Although the current transport scheme in CLaMS shows good ability of rep-
resenting transport of tracers in the stably stratified stratosphere, it shows in-
sufficient representation of fast convective uplift and mixing due to weak ver-
tical stability in the troposphere. The CLaMS transport scheme was improved
by including the effects of vertical instability and the related convection using
the moist Brunt-Viisild Frequency parametrizing the new tropospheric mixing.
The revised CLaMS one-year simulation show a reasonable representation of
convective patterns in the middle and upper troposphere. The extension of the
mixing scheme increases the tropospheric influence in the middle and upper tro-

posphere and at the same time enhances the STE in the UTLS region.
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