Development and Application of a Multiscale Model for the Magnetic Fusion Edge Plasma Region

Felix Martin Michael Hasenbeck

$$\begin{split} \frac{\partial n_0}{\partial t} + \boldsymbol{\nabla} \cdot \left[n_0 \boldsymbol{u}_{\parallel 0} - D(\langle \widetilde{n} \boldsymbol{v}_{\scriptscriptstyle \mathrm{E}} \rangle) \boldsymbol{\nabla}_{\perp} n_0 \right] &= S_{0in}^{ic} \\ \left(\frac{\partial}{\partial t} + \boldsymbol{v}_{\scriptscriptstyle \mathrm{E}} \cdot \boldsymbol{\nabla}_{\perp} \right) \widetilde{n} &= -\boldsymbol{v}_{\scriptscriptstyle \mathrm{E}} \cdot \boldsymbol{\nabla}_{\perp} n_0 + \frac{T_{0e}}{e} \mathcal{K}(\widetilde{n}) \\ &- n_0 \mathcal{K}(\phi) - n_0 B_0 \big(\nabla_{\parallel 0} + \widetilde{\nabla}_{\parallel} \big) \Big(\frac{u_{\parallel}}{B_0} - \frac{j_{\parallel}}{e n_0 B_0} \Big) + \gamma(\widetilde{n}) \end{split}$$

Energie & Umwelt/ Energy & Environment Band/ Volume 307 ISBN 978-3-95806-120-0

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Plasma Physics IEK-4

Development and Application of a Multiscale Model for the Magnetic Fusion Edge Plasma Region

Felix Martin Michael Hasenbeck

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 307

ISSN 1866-1793

ISBN 978-3-95806-120-0

Contents

1.	Intro	oductio	in	11				
2.	Generic multiscale model for a fluid							
	2.1.	From a	a kinetic to a fluid description	16				
	2.2.	Gener	ic multiscale model equations	20				
		2.2.1.	Scale separation assumption and Reynolds decomposition	21				
		2.2.2.	Particle balance	23				
		2.2.3.	Momentum balance	26				
		2.2.4.	Energy balance	27				
		2.2.5.	Discussion of the generic multiscale model	28				
	2.3.	Outlin	e of a coupled code system	28				
		2.3.1.	Structure of the coupling procedure	29				
		2.3.2.	Averages of temporal and spatial derivatives	36				
		2.3.3.	Macroscale transport models for averaged mesoscale terms	38				
		2.3.4.	Stationary states in the generic multiscale model	39				
3.	Larg	ge scale	e model for the plasma edge	43				
	3.1.	The to	okamak device	44				
	3.2.	Bragir	skii closure for a collisional, magnetized plasma	47				
	3.3.	The la	rge scale model	52				
		3.3.1.	Assumptions of the large scale edge model	52				
		3.3.2.	Specification of the macroscale transport model	55				
		3.3.3.	Model equations of the self-contained large scale edge model .	56				
	3.4.	Discus	sion of the large scale model	57				
4.	Drift fluid models for the plasma edge							
	4.1.	Perper	adicular fluid drifts	60				
	4.2.	Globa	l drift fluid model	61				
		4.2.1.	Model assumptions	62				
		4.2.2.	Particle balance	63				
		4.2.3.	Total parallel momentum balance	64				
		4.2.4.	Ion and electron energy balance	65				
		4.2.5.	Ohm's law	66				
		4.2.6.	Vorticity equation	67				
		4.2.7.	Discussion of the global drift fluid model	67				

	4.3.	Local 4.3.1. 4.3.2.	drift fluid model	68 69 71				
5.	Spec 5.1.	cific mu Model 5.1.1. 5.1.2.	ultiscale model for the plasma edge equations Macroscale part Mesoscale part	75 75 75 77				
	5.2. 5.3.	Discus Survey	sion of the multiscale model \ldots	78 78				
6.	Macroscale transport models for averaged mesoscale dynamics 81							
	6.1.6.2.	Repres 6.1.1. 6.1.2. Passive 6.2.1. 6.2.2.	Sentation of transport via a diffusion-convection scheme Fick's laws and drift-diffusion equations	82 82 84 87 87				
		6.2.3.	numbers	89 100				
7.	Exar	nple of	a 1D coupled code system	105				
	7.1.	Setup	of the coupled code system	106				
		7.1.1.	Macroscale part: 1D code	106				
		7.1.2.	Mesoscale part: drift fluid code ATTEMPT	108				
		7.1.3.	Coupling procedure	110				
		7.1.4.	Determination of the averaged mesoscale terms	114				
	7.2.	Compa	arison of local and non-local ATTEMPT simulations	120				
	7.3.	Result	s of the coupled code system	125				
		(.3.1. 7.2.0	Setup of the simulations	125				
		1.3.2.	simulation	198				
		7.3.3.	Performance of the procedure to check for the average mesoscale	120				
			flux	133				
		7.3.4.	Time savings of the coupled code system	137				
		(.3.5. 7 2 6	Additional studies	142				
		1.3.0.	Summary and discussion of results	143				
8.	Simulations with the B2-ATTEMPT coupled code system 147							
	8.1.	Multis	cale model of the B2-ATTEMPT system	148				
	8.2.	Outline of the 2D coupling procedure						
	8.3.	Result	s of the 2D coupled code system	153				
		8.3.1.	Assessment of different macroscale transport models	162				

	8.3.2. Poloidal variation of transport coefficients	164 167		
9.	Conclusions and Outlook	169		
Α.	Sampling the velocity field for the passive scalar system	175		
в.	Reference figures of B2-EIRENE simulations	179		
Re	ferences	181		
Ac	Acknowledgements			

Energie & Umwelt/ Energy & Environment Band/Volume 307 ISBN 978-3-95806-120-0

