Relation between growth rate, material quality, and device grade condition for intrinsic microcrystalline silicon:

From layer investigation to the application to thin-film tandem solar cells

Stephan Yann Michard

Energie & Umwelt/ Energy & Environment Band/Volume 259 ISBN 978-3-95806-048-7

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research IEK-5 Photovoltaics

Relation between growth rate, material quality, and device grade condition for intrinsic microcrystalline silicon:

From layer investigation to the application to thin-film tandem solar cells

Stephan Yann Michard

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

1	Introduction	. 1
2	Fundamentals of thin-film silicon and its application solar cells	
2.1	Hydrogenated amorphous and microcrystalline silicon	5
2.2	Operating principle of silicon thin-film single junction and mujunction solar cells	ulti- 10
2.3	High growth rates for microcrystalline silicon	14
3	Experimental Methods	21
3.1	The deposition system	21
3.2	Plasma-enhanced chemical vapor deposition technique	24
3.3	Hot wire deposition technique	26
3.4	Material and solar cell preparation	27
3.5	Material characterization	28
3.5.1	Electrical conductivity	28
3.5.2	Thickness measurements	29
3.5.3	Raman spectroscopy	29
3.5.4	Infrared spectroscopy	31
355	Investigating the defect density in thin-film materials	34

3.5.6	X-ray diffraction	34
3.5.7	Transmission electron spectroscopy	36
3.5.8	Secondary ion mass spectrometry	36
3.6	Solar cell characterization	37
3.6.1	Solar cell current-voltage characteristic	37
3.6.2	Quantum efficiency measurements	38
3.6.3	Light degradation	40
4	High deposition rate processes for the fabrication of r	mi-
	crocrystalline silicon thin films	43
4.1	Introduction	43
4.2	Material properties and deposition rate	45
4.2.1	Electrode distance	45
4.2.2	Deposition pressure	
4.2.3	Deposition power	47
4.3	Electrical transport	50
4.3.1	Electrode distance	50
4.3.2	Deposition pressure	
4.3.3	Deposition power	53
4.4	Defect density and material quality	53
4.5	Degree of silane gas depletion	57
4.6	Discussion	58
4.7	Conclusion	63
5	Investigation of porosity, atmospheric gas diffusion, a	nd
	microstructure in microcrystalline silicon fabricated	at
	high growth rates	67
5.1	Introduction	67
5.2	Investigation of structure and porosity of $\mu \text{c-Si:H}$ by IR	70
5.3	Investigating diffusion path of oxygen for $\mu \text{c-Si:H}$ by SIMS	75
5.4	Investigating the evolution of the Raman intensity ratio along t	he 76

5.5	Structural investigation by XRD and Raman spectroscopy	78
5.6	TEM investigations of $\mu \text{c-Si:H}$ layers at various deposition rates Raman intensity ratios	and 83
5.7	Discussion	85
5.8	Conclusion	92
6	Application of high deposition rate processes for	the
	fabrication of microcrystalline silicon solar cells	. 95
6.1	Introduction	95
6.2	Increasing the deposition rate of the intrinsic absorber layer of Si:H thin-film single junction solar cells	μ c - 98
6.3	Application of buffer layers to μ c-Si:H single junction solar cells	102
6.3.1	The effect of buffer layers on the performance of thin-film solar cells	102
6.3.2	Varying the thickness of the buffer layer for thin-film solar cells \ldots	106
6.3.3	About the challenge to keep the deposition rate high when implement buffer layers	Ŭ
6.4	Simulation of the ion impact	111
6.4.1	Approach	111
6.4.2	Penetration depth and radial distribution of ions with varying incident energy in silicon	
6.5	Discussion	113
6.6	Conclusion	118
7	Microcrystalline silicon absorber layers prepared at deposition rates for thin-film tandem solar cells	
7.1	Introduction	121
7.2	Photovoltaic parameters	122
7.3	Light soaking	124
7.4	Discussion	127
7.5	Conclusion	130

8	Calculation of cost benefits on industrial sco	
	the application of elevated growth rates to tandem solar cells	
8.1	Introduction	131
8.2	Approach	131
8.3	Conclusion	134
9	Conclusion	135
	Appendix	138
	List of Figures	154
	List of Tables	160
	Bibliography	163
	Publications List	180
	Acknowledgments	182

Energie & Umwelt /
Energy & Environment
Band / Volume 259
ISBN 978-3-95806-048-7

