

Computational Trends in Solvation and Transport in Liquids Lecture Notes

edited by Godehard Sutmann, Johannes Grotendorst, Gerhard Gompper, Dominik Marx

Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC)

Computational Trends in Solvation and Transport in Liquids

edited by Godehard Sutmann, Johannes Grotendorst, Gerhard Gompper, Dominik Marx

Jülich CECAM School, 23 – 27 March 2015 Forschungszentrum Jülich GmbH Lecture Notes

Schriften des Forschungszentrums Jülich

IAS Series

Volume 28

ISSN 1868-8489

ISBN 978-3-95806-030-2

Contents

Atomistic Methods

Modeling the Quantum Nature of Atomic Nuclei by Imaginary Time Path **Integrals and Colored Noise**

Michele Ceriotti

chel	le Ceriotti	1
1	Imaginary-Time Path Integrals	2
2	Path Integral Molecular Dynamics	7
3	Accelerating Convergence with Colored Noise	10
4	Conclusive Remarks	17

Ab initio Molecular Dynamics Approach to Solvation and Chemical Reactions

Rodolphe Vuilleumier

lolphe Vuilleumier		25
1	Introduction	25
2	Ab initio Molecular Dynamics	26
3	Applications to Solvation and Chemical Reactions	34
4	Extensions	40
5	Conclusions	41

High-Dimensional Neural Network Potentials as a Tool to Study Solvation *Jörg Behler*

0		
rg B	Behler	55
1	Introduction	55
2	Conventional Neural Network Potentials	59
3	High-Dimensional Neural Network Potentials	62
4	Symmetry Functions	66
5	Training Neural Networks	74
6	Discussion	82
7	Summary	83

A Molecular Dynamics Study of Peptide Stability in Mixed Solutions

Beate Moeser, Dominik Horinek

1	Introduction: Protein Stability in Solutions	89
2	Simulation Approach to Transfer Free Energies	01 04
2	Simulation Approach to Hanster Free Energies	07
3	Simulation Methods	97
4	Results	99
5	Transfer Free Energies of Secondary Structure Motifs - ASA Scaling	100
6	Conclusions	103

89

Modelling and Analysis of Interfacial Structural Transitions in Ionic Liquids at Charged Interfaces

Vladislav V. Ivaništšev, Kathleen Kirchner, Tom Kirchner, Sean O'Connor, Maxim V. Fedorov

axim	V. Fedorov	107
1	Introduction	107
2	Motivation	107
3	Interfacial Structures in Ionic Liquids at Charged Surfaces	108
4	Analysis and Description of Interfacial Structural Transitions	
	in Ionic Liquids	110
5	Molecular-Scale Structural Reorganization of Ionic Liquids	
	in Response to the Surface Charge	114
6	Poly(a)morphic Portrait of the Electrical Double Layer in Ionic Liquids	119
7	Conclusions	121

Biomolecular Solvation

Matthias	Heyden	129
1	Introduction	129
2	Timescales in Biomolecular Solvation	130
3	Water Dynamics	131
4	Hydration Water of Biomolecules	138
5	Hydration Water Properties and Correlated Dynamics in 3D	142
6	Efficient Computation of Correlation Functions	147

Simulation Techniques for Solvation-Induced Surface-Interactions at Prescribed Water Chemical Potential

Alexander Schlaich, Bartosz Kowalik, Matej Kanduč, Emanuel Schneck, Roland R. Netz 155 1 Introduction 155 2 Measuring Chemical Potentials in Computer Simulations 156 3 Simulation Results: Chemical Potentials in Simple Liquids 161 4 Surface Interactions at Prescribed Water Chemical Potential 169 5 Conclusions 181

Coarse Grain and Continuum Methods

Classical Density Functional Theory to Tackle Solvation in Molecular Liquids

Guillau	me Jeanmairet, Maximilien Levesque, Volodymyr Sergiievskyi,	
Daniel	Borgis	187
1	Introduction	187
2	The Case of Atomic Fluids	188
3	The Case of Molecular Fluids:	
	Molecular Density Functional Theory (MDFT)	195

Accurate Coarse-Grained Potentials for Soft Matter Systems

Ronald	Blaak, Barbara Capone, Christos N. Likos, Lorenzo Rovigatti	209
1	Introduction	209
2	The Effective Hamiltonian	210
3	Methods of Calculating Effective Pair Potentials	222
4	Hard-Soft Colloidal Mixtures	227
5	Dendrimers	233
6	Ring Polymers	243
7	Concluding Remarks	250

Modeling of Solvation Effects for Brownian Dynamics Simulation of Biomolecular Recognition

Neil J. Bruce, Daria B. Kokh, Musa Ozboyaci, Rebecca C. Wade		259
1	Introduction	259
2	Continuum Solvent Models	261
3	Challenges Due to the Particulate Nature of Water and Ions	267
4	Hydrodynamic Interactions	272
5	Concluding Remarks	275

Continuum Solvation Modeling of Solute-Solvent Interactions

Robert Franke

1	Introduction	281
2	Continuum Solvation Models	283
3	Some Illustrative Data on Calculations with Polarizable Continuum Models	304
4	The Conductor-Like Screening Model of Real Solvents (COSMO-RS)	307
5	Concluding Remarks	311

281

Hybrid Methods

Modeling Biomolecular Solvation Effects by Hybrid QM/MM Methods

Magnus Schwörer, Gerald Mathias

Introduction	315
QM/MM Interactions	316
Determining the QM/MM Setup	319
Probing and Improving the Accuracy of QM/MM Calculations	321
Summary	325
	Introduction QM/MM Interactions Determining the QM/MM Setup Probing and Improving the Accuracy of QM/MM Calculations Summary

315

Coarse-Grain Water and Solutions: Hybrid AA/CG with Martini

Lars Schäfer		333
1	Introduction	333
2	Brief Introduction to the CG-Martini Force Field	334
3	Direct Embedding of AA Solutes in CG Environment	336
4	Details of the AA/CG Simulations	337
5	Validation 1: Dimerization Free Energy Profiles	340
6	Validation 2: Structure	345
7	Summary and Conclusions	348

Adaptive Resolution Simulation

Raffaello Potestio, Aoife Fogarty, Christine Peter, Kurt Kremer		353
1	Introduction	353
2	Coarse-Graining	355
3	Adaptive Resolution Simulations	356
4	Conclusions	372

MD of Biomolecules Steered with Mean Solvation Forces Obtained from 3D-RISM-KH Molecular Theory of Solvation

383 Andriy Kovalenko, Ihor Omelyan 0 384 Prior to Introduction: Quo vadis Motivation and Introduction 1 384 2 MD of a Biomolecule Steered with Mean Solvation Forces 387 3 3D-RISM-KH Molecular Theory of Solvation 389 392 4 Combining MD with 3D-RISM-KH 5 Generalized Solvation Force Extrapolation 393 6 OIN Ensemble MTS-MD Steered with Extrapolated 3D-RISM-KH Mean Solvation Forces 401 7 Illustrations of the Hybrid MTS-MD/OIN/GSFE/3D-RISM-KH 403 Simulation Method on Biomolecular Problems 8 Concluding Remarks 408

Integral Equation Theory as a Solvation Model for Classical and Quantum Solute Systems

Stefan M. Kast, Jochen Heil, Franziska Hoffgaard		419
1	Introduction	419
2	Integral Equation Theory	422
3	Molecular Theories	427
4	Concluding Remarks	432

Mesoscale Fluid Methods

Smoothed Dissipative Particle Dynamics -A Mesoscopic Particle-Based Hydrodynamic Technique for Complex Fluids

11 111050	scopie i uritete Buseu riguroughunne reeninque for Complex i fu	ius
Dmitry.	A. Fedosov, Kathrin Müller, Gerhard Gompper	435
1	Introduction	435
2	Smoothed Particle Hydrodynamics	437
3	Smoothed Dissipative Particle Dynamics	438
4	SDPD with Angular Momentum Conservation	439
5	Application of the SDPD Method	441
6	Tank-Treading of a Vesicle in Shear Flow	445
7	Summary	446
А	Calculation of Derivatives	447
В	Keller-Skalak Theory	449

Lattice-Boltzmann Simulations of Colloids and Polyelectrolytes in Electrolyte Solutions

Christian Holm, Owen A. Hickey		453
1	Introduction	453
2	Hydrodynamics	454
3	Electrokinetic Equations	457
4	The Hybrid Molecular Dynamics-Lattice-Boltzmann Model	462
5	Electrophoresis of a Colloidal Sphere	477
6	Free Solution Electrophoresis of Polyelectrolyte Chains	481
7	Electrophoresis of a Polyelectrolyte-Grafted Colloid	486
8	Nanopore Conductance	490
9	Conclusion and Outlook	499

Lattice-Boltzmann Simulations of Colloidal Particles at Fluid Interfaces

urting	511
Introduction	511
Simulation Method	512
Applications	517
Conclusion	526
	<i>arting</i> Introduction Simulation Method Applications Conclusion

Multiparticle Collision Dynamics: Methods and Applications

Marisol Ripoll		533
1	Introduction	533
2	Multiparticle Collision Dynamics: The Method	535
3	Simulation of Hydrodynamic Flows with MPC	546
4	Concluding Remarks	551

Responsive Particle Dynamics for Modeling Solvents on the Mesoscopic Scale

Wim Briels		557
1	Introduction	557
2	The Langevin Equation	558
3	Application to Complex Soft Matter	561
4	Brownian Dynamics	564
5	Telechelic Polymers	570
6	Concluding Remarks	572

Numerical Methods and Hardware

NFFT Based Fast Ewald Summation for Various Types of Periodic Boundary Conditions

575 Franziska Nestler, Michael Pippig, Daniel Potts Introduction 575 1 2 Prerequisite 577 3 Fast Ewald Summation for 3d-Periodic Boundary Conditions 582 4 Fast Ewald Summation for 2d-Periodic Boundary Conditions 583 5 Fast Ewald Summation for 1d-Periodic Boundary Conditions 588 6 Fast Ewald Summation for 0d-Periodic (Open) Boundary Conditions 592 7 Conclusion 594

Modern Trends in Hardware Development

599 Dirk Pleiter 1 Introduction 599 Abstract Machines and Performance Models 600 2 3 Technology Trends 603 4 **Processor Architectures** 605 5 Accelerators 607 High-Performance Networks 608 6 7 Digression: Lattice-Boltzmann Method 609 8 Modern Supercomputer Architectures 611 9 Conclusions and Outlook 612

The majority of chemical reactions including many important industrial processes and virtually all biological activities take place within a liquid environment. Solvents, of which water is certainly the most important, are able to "solvate" molecules, thereby transferring these as "solutes" into the liquid state. Transport processes and solute-solute interactions in the solvent are then supporting structure formation, selforganization or chemical reactions. Solvents are not only able to provide a liquid phase for simple chemical reagents and the much more complex proteins; they have the additional ability to wet extended surfaces such as lipid membranes or metal electrodes, thereby creating interfaces. An in-depth understanding of solvation at a fundamental level of chemistry, physics and engineering is essential to enable major advances in key technologies for environmentally friendly technologies, e.g. to reduce pollution, to increase energy efficiency or to prevent corrosion to name but a few challenges to our modern day society. In biophysics and life sciences, water is the most important and dominant solvent, providing the basic environment for the complexity of life. Therefore, an understanding of solvation is crucial to unravel biological function in a comprehensive way.

The Lecture Notes contain the current state-of-the-art methods to treat solvation and transport on different levels of resolution. Topics include ab initio methods, atomistic and mesoscale methods for modeling accurately the solute-solvent interaction and an efficient treatment of the solvent on a mesoscopic level. Recent advances in mathematical techniques are introduced, which are fundamental for efficient treatment of solute-solvent systems. Recent trends and future directions in computational science are addressed to provide a perspective for software development and computer architectures.

This publication was edited at the Jülich Supercomputer Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich Simulation sciences and the supercomputing facility in on organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.

IAS Series Volume 28 ISBN 978-3-95806-030-2

