

Assessment of Laser Induced Ablation Spectroscopy (LIAS) as a method for quantitative in situ surface diagnostic in plasma environments

Niels Gierse

Forschungszentrum Jülich GmbH Institute of Energy and Climate Research Plasma Physics IEK-4

Assessment of Laser Induced Ablation Spectroscopy (LIAS) as a method for quantitative in situ surface diagnostic in plasma environments

Niels Gierse

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 231

ISSN 1866-1793

ISBN 978-3-89336-994-2

Contents

Co	onten	ts	13		
Li	st of .	Abbreviations	17		
Li	List of Figures				
Li	st of '	Tables	23		
1	Intro	oduction	25		
2	Tech	nical setup	37		
	2.1	The TEXTOR tokamak	37		
	2.2	Overview of LIAS experimental setup at TEXTOR	38		
	2.3	Sample holder	41		
	2.4	Laser system and beam path	42		
	2.5	Timing of laser and diagnostics with TEXTOR operation	43		
	2.6	Overview of camera observation systems	44		
		2.6.1 Wavelength and neutral filters	44		
	2.7	Phantom v711 fast camera	45		
	2.8	"Spectrelle" high resolving spectrometer	46		
	2.9	Radially resolving spectrometer	47		
	2.10	AvaSpec-2048 ("Spec4") overview spectrometer	48		
		2.10.1 Correction for field of observation	48		
3	The laser ablation process with a view to LIAS				
	3.1 Overview of the laser ablation process				
		3.1.1 Atoms removed per shot	53		
		3.1.2 Abundances	55		

		3.1.2.1 Neutrals/ions	55
		3.1.2.2 Ratio of Atoms/molecules/clusters/macroscopic par-	
		ticles	55
		3.1.3 Velocity distribution of ablated particles	56
		3.1.4 Influence of magnetic field on ablation process	58
4	г		(1
4	Exp	erimental investigation of the ablation process	61
	4.1		61
		4.1.1 Bulk materials	61
	4.0	4.1.2 a-C:D deposit on polished tungsten	63
	4.2	Method to determine LIAS velocity profiles from fast camera measure-	(0
	4.0	ments	63
	4.3	Velocity profile measurements	65
5	Plas	ma edge conditions in TEXTOR	73
	5.1	Overview of plasma edge physics in a limiter tokamak	73
		5.1.1 Analytical formula for density and temperature profiles	75
		5.1.2 Computing the heat flux value in radial direction	75
		5.1.3 Uncertainties in plasma parameter measurements due to dif-	
		ferent measurement and sample position	76
	5.2	TEXTOR plasma edge characterization	76
	5.3	Helium beam method for plasma temperature and density measure-	
		ments	77
	5.4	Analysis of Helium beam measurements for experimental conditions	
		in this work	78
	-		~
6	Fun	damentals of injected material – plasma edge interaction	85
	6.1	Overview of atomic processes in a plasma	85
	6.2	The situation for LIAS: Fast neutral particles entering the plasma edge	87
	6.3	The penetration depth and ionization time	88
	6.4	Line emission due to excitation	89
	6.5		89
		6.5.1 Neutral lungsten	89
		6.5.2 Neutral Carbon	90
	6.6	Photon emissivity coefficients	90
		6.6.1 Neutral Tungsten emission	91
	. –	6.6.2 Neutral Carbon emission	91
	6.7	The concept of photon efficiency	93
	6.8	S/XB data	95

	6.9	Detern ratios	mination	of plasma perturbation from hydrogen line intensity	96
7	Experimental investigation of ablated material-plasma interaction				101
	7.1	First r	esults for	r LIAS on mixed and hydrocarbon layers	101
	7.2	Time resolved LIAS measurements and temporal separation of LIAS			
		and L	IBS		105
		7.2.1	Tungste	n bulk material	105
		7.2.2	Time re	solved LIAS measurements of carbon atoms, ions and	
			molecul	les	106
			7.2.2.1	Separation of LIBS and LIAS	106
			7.2.2.2	Neutral and molecular emission	107
	7.3	LIAS	timescale	measurements	109
	7.4	Time	integrate	d radial emission profile	116
		7.4.1	Tungste	n	116
		7.4.2	Carbon		118
	7.5	Deter	mination	of H_{α} LIAS photon efficiencies for a-C:D layers	119
		7.5.1	Method	A: Determination of number of ablated atoms	121
			7.5.1.1	Crater area measurements	121
			7.5.1.2	Determination of layer inventory	121
		7.5.2	Method	B: Quantitative measurement of LIAS photons	124
			7.5.2.1	Radiometric calibration in TEXTOR	124
			7.5.2.2	Determination of the spectral response curve β with	
				uniform spherical light sources	128
			7.5.2.3	Observation beam path transmission measured with	
				overview spectrometers	133
			7.5.2.4	Absolute calibration for higher orders	135
		7.5.3	Combin	ed result: LIAS photon efficiency measurements	135
	7.6	Exper	imental i	nvestigation of plasma perturbation by ablated material	138
		7.6.1	Variatio	n of injected amount per pulse	138
		7.6.2	Observa	ation of H_{γ}/H_{δ} emission intensity ratio	141
8	Ana	lytical	descripti	ion of plasma perturbation due to injected impurities	147
	8.1	Overv	view		147
	8.2	8.2 A simple description of local plasma perturbation by laser ablativ			148
		8.2.1	Energy	balance	148
		8.2.2	Particle	balance	149
		8.2.3	Quasi-n	eutrality condition	150
		8.2.4	System	of equations and numerical solution	150

	8.3	Results of the plasma perturbation model					
		8.3.1	Variation of A_k^{\parallel}	151			
		8.3.2	Local plasma parameter as function of injected atoms	152			
9	Mor	nte Carl	lo modeling of the material plasma interaction	157			
	9.1	1 Description					
		9.1.1	Comparison of Monte Carlo code with analytical computation	160			
	9.2	9.2 Comparison of measured radial emission profiles with Monte Carlo					
		code s	imulations	160			
		9.2.1	Tungsten	160			
		9.2.2	Carbon	165			
10	Disc	cussion	of results	173			
	10.1	Outloo	bk	179			
_							
Bi	bliog	raphy		181			
A	Outline of plasma perturbation calculation provided by Mikhail Tokar						
B	ADAS ionization rate output for atomic carbon						

Energie & Umwelt / Energy & Environment Band / Volume 231 ISBN 978-3-89336-994-2

