


## Numerical simulation of gas-induced orbital decay of binary systems in young clusters

**Christina Korntreff** 



Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC)

## Numerical simulation of gas-induced orbital decay of binary systems in young clusters

Christina Korntreff

Schriften des Forschungszentrums Jülich

IAS Series Volume 25

## **Contents**

| 1 | Intro                                        | oduction                                             | 1  |  |
|---|----------------------------------------------|------------------------------------------------------|----|--|
|   | 1.1                                          | Binary detection methods                             | 2  |  |
|   | 1.2                                          | Binaries in the field                                | 5  |  |
|   | 1.3                                          | Formation on different scales                        | 9  |  |
|   | 1.4                                          | Binaries in young cluster environments               | 16 |  |
|   | 1.5                                          | Evolution of binary systems in a cluster environment | 19 |  |
|   | 1.6                                          | Thesis structure                                     | 25 |  |
| 2 | Binary evolution in an ONC-like star cluster |                                                      |    |  |
|   | 2.1                                          | Cluster model                                        | 28 |  |
|   | 2.2                                          | Dynamical evolution                                  | 30 |  |
|   | 2.3                                          | Gas-induced orbital decay of solar-mass stars        | 32 |  |
|   | 2.4                                          | Combination of orbital decay and cluster influences  | 34 |  |
|   | 2.5                                          | Gas-induced orbital decay for other stellar masses   | 35 |  |
|   | 2.6                                          | Limitations and approximations                       | 39 |  |
| 3 | Numerical simulation 4                       |                                                      |    |  |
|   | 3.1                                          | Physical processes                                   | 41 |  |
|   | 3.2                                          | Mathematical description                             | 44 |  |
|   | 3.3                                          | Numerical implementation                             | 45 |  |
|   | 3.4                                          | Tests of the numerical scheme                        | 49 |  |
| 4 | Results of hydrodynamical simulations        |                                                      |    |  |
|   | 4.1                                          | Basics of the density perturbation                   | 53 |  |
|   | 4.2                                          | Evolution of binaries with circular orbits           | 57 |  |
|   | 4.3                                          | Fit and Latin Hypercube Sampling                     | 65 |  |
|   | 4.4                                          | Evolution of binaries on eccentric orbits            | 68 |  |
|   | 4.5                                          | Summary                                              | 71 |  |

| 5   | Consequences of orbital decay for a binary population in a typical cluster |     |  |  |
|-----|----------------------------------------------------------------------------|-----|--|--|
|     | 5.1 Method                                                                 | 74  |  |  |
|     | 5.2 Results                                                                | 75  |  |  |
| 6   | Discussion                                                                 | 81  |  |  |
| 7   | 7 Summary and conclusion                                                   |     |  |  |
| Bil | Bibliography                                                               |     |  |  |
| A   | Tables                                                                     | 99  |  |  |
|     | A.1 Latin hypercube parameters for circular orbits                         | 99  |  |  |
|     | A.2 Latin hypercube parameters for eccentric orbits                        | 100 |  |  |

Most stars are not single but part of a binary or multiple system. These binary systems form from the gas and dust in molecular clouds usually building clusters that are initially embedded in the star-forming gas. Hence, the question arises whether the properties and frequency of binary stars change during this gas-embedded phase.

Until today, the interaction between binary systems and surrounding gas has been neglected. In this interaction, the binary system potential torques the nearby gas, producing an outgoing acoustic wave. This wave transports angular momentum from the binary system to the gas, resulting in a decay of the binary orbit.

In my thesis I investigated how a binary population in a typical young cluster is affected by this gas-induced orbital decay. When observing a forming star cluster, the developed method can be used to deduce the impact of the gas-induced orbital decay on its binary population.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.

