

Transmutation von Transuranen in einem gasgekühlten beschleunigergetriebenen System

Klaus Hendrik Biß

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung (IEK) Systemforschung und Technologische Entwicklung (IEK-STE)

Transmutation von Transuranen in einem gasgekühlten beschleunigergetriebenen System

Klaus Hendrik Biß

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Band / Volume 217

ISSN 1866-1793

ISBN 978-3-89336-964-5

Inhaltsverzeichnis

2Grundlagen der Transmutation32.1Gefährdungspotential radioaktiver Stoffe32.2Brennstoffkreisläufe92.2.1Offener Brennstoffkreislauf92.2.2Wiederaufarbeitung92.2.3Partitioning & Transmutation (P&T)102.4Kombinierte Verfahren132.3Nukleare Prozesse152.3.1Kernphysikalische Grundlagen152.3.2Neutronenphysikalische Kenngrößen212.4Transmutationssysteme252.4.1Kritische Systeme252.4.2Unterkritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.4Kopplungsprogramme344Modellentwicklung454.1Litteraturrecherche454.2Modellbildung von AGATE494.3AGATE-Spallationstarget575.1Testphase575.1.2Teibeladung mit TRU-Brennstoff505.2.2Gleichgewichtskern625.2.3Simulation des Betriebsverhaltens716Transmutationsverhalten796.1.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.2Brennstoffkonzepte in einer Magnesiumoxidmatrix796.2Brennstoffkonzepte in einer Thoriumoxidmatrix93	1	Einleitung						
2.1Gefährdungspotential radioaktiver Stoffe32.2Brennstoffkreisläufe92.2.1Offener Brennstoffkreislauf92.2.2Wiederaufarbeitung92.2.3Partitioning & Transmutation (P&T)102.2.4Kombinierte Verfahren132.3Nukleare Prozesse152.3.1Kernphysikalische Grundlagen152.3.2Neutronenphysikalische Kenngrößen212.4Transmutationssysteme252.4.1Kritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.4Kopplungsprogramme383.5Endlagerrelevante Größen414Modellentwicklung454.1Literaturrecherche454.2Modellbildung von AGATE494.3AGATE-Spallationstarget575.1.1Testphase575.1.2Teilbeladung mit MOX-Brennstoff575.1.3Beldung mit MOX-Brennstoff605.2.3Stuffling665.2.3Stuffling665.3Simulation des Betriebskerhaltens716.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.1Brennstoffvariante PuMA796.1.2Brennstoffvariante BRD906.2Betriebstreihate REM906.2Bernenstoffvariante REM	2	Gru	ndlagen der Transmutation	3				
2.2 Brennstoffkreisläufe 9 2.2.1 Offener Brennstoffkreislauf 9 2.2.2 Wiederaufarbeitung 9 2.2.3 Partitioning & Transmutation (P&T) 10 2.2.4 Kombinierte Verfahren 13 2.3 Nukleare Prozesse 15 2.3.1 Kernphysikalische Grundlagen 15 2.3.2 Neutronenphysikalische Kenngrößen 21 2.4 Transmutationssysteme 25 2.4.1 Kritische Systeme 25 2.4.2 Unterkritische Systeme 26 3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellidung von AGATE 49 4.3 AGATE-Spallationstarget 57 5.1.1 Beladung mit MOX-Brennst		2.1	Gefährdungspotential radioaktiver Stoffe	3				
2.2.1 Offener Brennstoffkreislauf 9 2.2.2 Wiederaufarbeitung 9 2.2.3 Partitioning & Transmutation (P&T) 10 2.2.4 Kombinierte Verfahren 13 2.3 Nukleare Prozesse 15 2.3.1 Kernphysikalische Grundlagen 15 2.3.2 Neutronenphysikalische Kenngrößen 21 2.4 Transmutationssysteme 25 2.4.1 Kritische Systeme 25 2.4.2 Unterkritische Systeme 26 3.4 Korplungsprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 57 5.1 Testphase 57 5.1.1 Beladung mit TRU-Brennstoff 60 5.2.2 Gleichgewichtsk		2.2	Brennstoffkreisläufe	9				
2.2.2 Wiederaufarbeitung 9 2.2.3 Partitioning & Transmutation (P&T) 10 2.2.4 Kombinierte Verfahren 13 2.3 Nukleare Prozesse 15 2.3.1 Kernphysikalische Grundlagen 15 2.3.2 Neutronenphysikalische Kenngrößen 21 2.4 Transmutationssysteme 25 2.4.1 Kritische Systeme 25 2.4.2 Unterkritische Systeme 26 3 Softwareprogramme 29 31 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 41 4 Modellbidtung von AGATE 49 4.3 AGATE-Spallationstarget 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teibeladung mit MOX-Brennstoff 57 5.2.2 Gleichgewichtskern 62 5.2.1 Referenzker			2.2.1 Offener Brennstoffkreislauf	9				
2.2.3Partitioning & Transmutation (P&T)102.2.4Kombinierte Verfahren132.3Nukleare Prozesse152.3.1Kernphysikalische Grundlagen152.3.2Neutronenphysikalische Kenngrößen212.4Transmutationssysteme252.4.1Kritische Systeme252.4.2Unterkritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.4Kopplungsprogramme363.5Endlagertelevante Größen434Modellentwicklung454.1Litteraturrecherche454.2Modellbildung von AGATE494.3AGATE-Spallationstarget575.1Testphase575.1.1Beladung mit MOX-Brennstoff605.2Betriebshonzepts575.1.2Ciliclagewichtskern625.2.2Gleichgewichtskern625.2.3Shuffling665.3Simulation des Betriebsverhaltens716.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.3Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET91 </td <td></td> <td></td> <td>2.2.2 Wiederaufarbeitung</td> <td>9</td>			2.2.2 Wiederaufarbeitung	9				
2.2.4Kombinierte Verfahren132.3Nukleare Prozesse152.3.1Kernphysikalische Grundlagen152.3.2Neutronenphysikalische Kenngrößen212.4Transmutationssysteme252.4.1Kritische Systeme252.4.2Unterkritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.4Kopplungsprogramme383.5Endlagerrelevante Größen434Modellentwicklung454.1Literaturrecherche454.2Modellidlung von AGATE494.3AGATE-Spallationstarget575.1.1Beladung mit MOX-Brennstoff575.1.2Teilbeladung mit TRU-Brennstoff605.2.3Shuffling665.3Simulation des Betriebskern625.2.3Shuffling665.3Simulation des Betriebsverhaltens716.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.3Brennstoffvariante PuMA796.1.4Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CE			2.2.3 Partitioning & Transmutation (P&T)	10				
2.3Nukleare Prozesse152.3.1Kernphysikalische Grundlagen152.3.2Neutronenphysikalische Kenngrößen212.4Transmutationssysteme252.4.1Kritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.3Abbrandberechnung363.5Endlagerrelevante Größen434Modellentwicklung454.1Literaturrecherche454.2Modellbildung von AGATE494.3AGATE-Spallationstarget575.1.1Beladung mit MOX-Brennstoff575.1.2Teibeladung mit TRU-Brennstoff605.2Betriebskonzepts575.1.2Glichgewichtskern625.2.3Shuffling665.3Simulation des Betriebsverhaltens716.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.3Brennstoffvariante PuMA796.1.4Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET916.3Brennstoffvariante CER			2.2.4 Kombinierte Verfahren	13				
2.3.1 Kernphysikalische Grundlagen 15 2.3.2 Neutronenphysikalische Kenngrößen 21 2.4 Transmutationssysteme 25 2.4.1 Kritische Systeme 26 3 Softwareprogramme 26 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellöhldung von AGATE 49 4.3 AGATE-Spallationstarget 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2.2 Gleichgewichtskern 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.3 Simulation des Betriebsverhaltens 71 6.1 Brennstoffkonzepte in einer Magn		2.3	Nukleare Prozesse	15				
2.3.2 Neutronenphysikalische Kenngrößen 21 2.4 Transmutationssysteme 25 2.4.1 Kritische Systeme 26 3.2 Unterkritische Systeme 26 3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 reilbeladung mit TRU-Brennstoff 60 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.3 Brennstoffvariante PuMA 79 6.1.3 Brennstof			2.3.1 Kernphysikalische Grundlagen	15				
2.4Transmutationssysteme252.4.1Kritische Systeme252.4.2Unterkritische Systeme263Softwareprogramme293.1Monte-Carlo-Code MCNPX303.2Nukleare Daten333.3Abbrandberechnung363.4Kopplungsprogramme383.5Endlagerrelevante Größen434Modellentwicklung454.1Literaturrecherche454.2Modellbildung von AGATE494.3AGATE-Spallationstarget515Entwicklung des Betriebskonzepts575.1.1Beladung mit MOX-Brennstoff575.1.2Teilbeladung mit TRU-Brennstoff605.2Simulation des Betriebsverhaltens615.3Simulation des Betriebsverhaltens716.1Brennstoffkonzepte in einer Magnesiumoxidmatrix796.1.3Brennstoffvariante PuMA796.2Brennstoffvariante CERMET916.2Brennstoffvariante CERMET91			2.3.2 Neutronenphysikalische Kenngrößen	21				
2.4.1 Kritische Systeme 25 2.4.2 Unterkritische Systeme 26 3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellididung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.2.3 Shufling 66 5.3 Simulation des Betriebsverhaltens 71 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 <td></td> <td>2.4</td> <td>Transmutationssysteme</td> <td>25</td>		2.4	Transmutationssysteme	25				
2.4.2 Unterkritische Systeme 26 3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.2.3 Shufling 66 5.3 Simulation des Betriebsverhaltens 71 6.1 Brennstoffkonzepte in einer Magnesiumxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante C			2.4.1 Kritische Systeme	25				
3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffvariante CERMET 91 6.2 Brennstoffvariante CERMET 91 6.2 Brennstoffvariante CER			2.4.2 Unterkritische Systeme	26				
3 Softwareprogramme 29 3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teibleladung mit TRU-Brennstoff 60 5.2.3 Shuffling 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 79 <td></td> <td></td> <td></td> <td></td>								
3.1 Monte-Carlo-Code MCNPX 30 3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 36 3.5 Endlagerrelevante Größen 48 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante RD 90 6.1.3 Brennstoffvariante CERMET 91 <td>3</td> <td>Soft</td> <td>twareprogramme</td> <td>29</td>	3	Soft	twareprogramme	29				
3.2 Nukleare Daten 33 3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffvariante CERMET 91 </td <td></td> <td>3.1</td> <td>Monte-Carlo-Code MCNPX</td> <td>30</td>		3.1	Monte-Carlo-Code MCNPX	30				
3.3 Abbrandberechnung 36 3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		3.2	Nukleare Daten	33				
3.4 Kopplungsprogramme 38 3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		3.3	Abbrandberechnung	36				
3.5 Endlagerrelevante Größen 43 4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 62 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		3.4	Kopplungsprogramme	38				
4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		3.5	Endlagerrelevante Größen	43				
4 Modellentwicklung 45 4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 79 6.1.1 Brennstoffvoriante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvoriante CERMET 91 6.2 Brennstoffvorzepte in einer Thoriumoxidmatrix 93								
4.1 Literaturrecherche 45 4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93	4	Мо	dellentwicklung	45				
4.2 Modellbildung von AGATE 49 4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		4.1	Literaturrecherche	45				
4.3 AGATE-Spallationstarget 51 5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		4.2	Modellbildung von AGATE	49				
5 Entwicklung des Betriebskonzepts 57 5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 79 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		4.3	AGATE-Spallationstarget	51				
5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.3 Simulation des Betriebsverhaltens 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93	F	Entwicklung das Batriabskanzants						
5.1 Testphase 57 5.1.1 Beladung mit MOX-Brennstoff 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.2 Brennstoffvariante PuMA 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93	J	5.1	Tostahasa	57				
5.1.1 Defaulting init MOX-Dremiston 57 5.1.2 Teilbeladung mit TRU-Brennstoff 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		0.1	5.1.1 Baladung mit MOV Brangetoff	57				
5.1.2 Temberatung init TRO-Breinston 60 5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 62 5.2.3 Shuffling 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante CERMET 90 6.1.3 Brennstoffkonzepte in einer Thoriumoxidmatrix 93			5.1.1 Deladung mit MOX-Diemistoli	51				
5.2 Betriebsphase 62 5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.2.3 Shuffling 64 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffkonzepte in einer Thoriumoxidmatrix 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		5.0	D.1.2 Temperaduling lift TRO-Diemiston	60				
5.2.1 Referenzkern 62 5.2.2 Gleichgewichtskern 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		0.2	5.2.1 Deferender	62				
5.2.2 Glerchgewichtskern 64 5.2.3 Shuffling 66 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93			5.2.1 Referenzkern	02				
5.2.3 Snuming 600 5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93			5.2.2 Gielengewichtskern	04				
5.3 Simulation des Betriebsverhaltens 71 6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		۳ 0	0.2.3 Snuming	00				
6 Transmutationsverhalten 77 6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93		0.3	Simulation des Betriedsverhaltens	(1				
6.1 Brennstoffkonzepte in einer Magnesiumoxidmatrix 79 6.1.1 Brennstoffvariante PuMA 79 6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93	6	Tra	nsmutationsverhalten	77				
6.1.1Brennstoffvariante PuMA796.1.2Brennstoffvariante BRD906.1.3Brennstoffvariante CERMET916.2Brennstoffkonzepte in einer Thoriumoxidmatrix93		6.1	Brennstoffkonzepte in einer Magnesiumoxidmatrix	79				
6.1.2 Brennstoffvariante BRD 90 6.1.3 Brennstoffvariante CERMET 91 6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93			6.1.1 Brennstoffvariante PuMA	79				
6.1.3Brennstoffvariante CERMET916.2Brennstoffkonzepte in einer Thoriumoxidmatrix93			6.1.2 Brennstoffvariante BRD	90				
6.2 Brennstoffkonzepte in einer Thoriumoxidmatrix 93			6.1.3 Brennstoffvariante CERMET	91				
0.2 Diemstonkonzepte in einer i nortumoxidilatrix		62	Brennstoffkonzepte in einer Thoriumovidmetriv	03				
6.2.1 Brennstoffvariante ThPuMA 04		0.4	6.2.1 Brennstoffvariante ThPuMA	94				

		$6.2.2 \\ 6.2.3$	Brennstoffvariante ThPu	95 96		
7	Zusammenfassung der Brennstoffuntersuchungen					
8	P&T-Bewertung					
	8.1	Endlag	gerung nach einem Abbrandzyklus	103		
	8.2	Abges	chlossener P&T-Prozess	107		
		8.2.1	Nuklidzusammensetzung am Ende der P&T-Phase	107		
		8.2.2	Endlagerrelevante Größen	115		
	8.3	Dauer	- und Kostenabschätzung	121		
	8.4	Zusam	menfassung und Diskussion	129		
9	Fazit					
Α	Anh	Anhang		134		
	A.1	Ergebi	nisse zum Transmutationsverhalten	134		
	A.2	Szenar	ien zur Laufzeitabschätzung	144		

Energie & Umwelt / Energy & Environment Band / Volume 217 ISBN 978-3-89336-964-5

