

Effizienzoptimierte CO₂-Abtrennung in IGCC-Kraftwerken mittels Wassergas-Shift-Membranreaktoren

Sebastian Thomas Schiebahn

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung (IEK) Elektrochemische Verfahrenstechnik (IEK-3)

Effizienzoptimierte CO₂-Abtrennung in IGCC-Kraftwerken mittels Wassergas-Shift-Membranreaktoren

Sebastian Thomas Schiebahn

I Inhaltsverzeichnis

Vorwort	I
Kurzfassung	III
Abstract	V
I Inhaltsverzeichnis	VII
II Abbildungsverzeichnis	XI
III Tabellenverzeichnis	XV
IV Abkürzungsverzeichnis	XVII
V Symbolverzeichnis	XIX
1 Einleitung und Aufgabenstellung	1
2 Kohlendioxidabtrennung in IGCC-Kraftwerken	
2.1 Funktionsweise und Aufbau des IGCC-Prozesses	
2.2 Demonstrationskraftwerke	9
2.3 Routen und Techniken zur Kohlendioxidabtrennung	10
2.3.1 Absorption in Flüssigkeiten	
2.3.2 Kryogene Luftzerlegung	13
2.3.3 Adsorption an Festkörpern	13
2.3.4 Feststoffreaktion	14
2.3.5 Gastrennmembranen	15
3 Beschreibung der Kraftwerkskomponenten	17
3.1 Vergaser	17
3.1.1 Thermodynamische Grundlagen	17
3.1.2 Kennzahlen	21
3.1.3 Brennstoffzufuhr	22
3.1.4 Vergasungsprinzipien und Bauformen von Vergasern	24
3.1.5 Rohgaskühlung	25
3.2 Gasreinigung	30
3.2.1 Entstaubung	31
3.2.2 Entschwefelung	35
3.3 Gasturbine	40
3.4 Abhitzedampferzeuger und Dampfturbine	43
3.5 Luftzerlegungsanlage	46
3.6 Prozesseinheiten der CO ₂ -Abtrennung	47

	3.6.1 CO-Konversion	17
	3.6.2 Physikalische Wäsche zur CO ₂ -Abtrennung	
	3.6.3 Gastrennmembranen zur CO ₂ -Abtrennung und -Anreicherung	
	3.6.4 CO ₂ -Nachbehandlung	
	-	
4	Literaturstudien zur CO ₂ -Abtrennung im IGCC	
	4.1 IGCC-Basiskonzepte	
	4.2 Post-Combustion Capture und Oxyfuel	
	4.3 Pre-Combustion Capture	
	4.3.1 Einflüsse des Wasserhaushaltes	
	4.3.2 Einflüsse der Prozesseinheiten	
	4.3.3 CO ₂ - und H ₂ -Membranen	
	4.3.4 CO ₂ - und H ₂ -selektive Wassergas-Shift-Membranreaktoren	
	4.4 Ergebnisse der Literaturstudie und Schlussfolgerungen	. 66
5	Berechnungsgrundlage und Simulationswerkzeuge	
	5.1 Aspen Plus	. 71
	5.2 Membranmodul in Aspen Custom Modeler	. 72
	5.3 EBSILON Professional	. 76
6	S Aufbau und Simulation des Referenz-IGCC	77
	6.1 Aufbau des Referenz-IGCC-Kraftwerks	. 77
	6.2 Simulationsergebnisse des Referenz-IGCC-Kraftwerks	. 80
7	Analyse der Wirkungsgradverluste	83
	7.1 Aufbau und Simulation	
	7.2 Aufschlüsselung der Wirkungsgradverluste	. 86
	7.3 Zusammenfassung der Erkenntnisse und Schlussfolgerung	. 87
8	B Konzeptentwicklung und Simulation	
_		
	8.1 Integration des Wassergas-Shift-Membranreaktors	
	8.1 Integration des Wassergas-Shift-Membranreaktors	. 89
	8.1.1 Positionierung der Membraneinheit	. 89 90
	8.1.1 Positionierung der Membraneinheit	. 89 90 91
	8.1.1 Positionierung der Membraneinheit	. 89 90 91 93
	 8.1.1 Positionierung der Membraneinheit 8.1.2 Vergleich H₂- gegenüber CO₂-selektiver Membran 8.1.3 Vergleich 3-End- gegenüber 4-End-Betriebsweise 8.1.4 Spülgasquellen für 4-End-Betrieb 	. 89 90 91 93
	 8.1.1 Positionierung der Membraneinheit 8.1.2 Vergleich H₂- gegenüber CO₂-selektiver Membran 8.1.3 Vergleich 3-End- gegenüber 4-End-Betriebsweise 8.1.4 Spülgasquellen für 4-End-Betrieb 8.1.5 Auswahl des Membranmaterials 	. 89 90 91 93 96
	8.1.1 Positionierung der Membraneinheit 8.1.2 Vergleich H ₂ - gegenüber CO ₂ -selektiver Membran 8.1.3 Vergleich 3-End- gegenüber 4-End-Betriebsweise 8.1.4 Spülgasquellen für 4-End-Betrieb 8.1.5 Auswahl des Membranmaterials 8.2 Aufbau und Simulation des Basis-Konzepts mit WGS-MR	. 89 90 91 93 96 99
	 8.1.1 Positionierung der Membraneinheit 8.1.2 Vergleich H₂- gegenüber CO₂-selektiver Membran 8.1.3 Vergleich 3-End- gegenüber 4-End-Betriebsweise 8.1.4 Spülgasquellen für 4-End-Betrieb 8.1.5 Auswahl des Membranmaterials 	. 89 90 91 93 96 99 100

8.3.2 Variation des Vergasungsdruckniveaus	105
8.3.3 Variation des H ₂ O/CO-Verhältnis im Membranreaktor	106
8.4 Einsatz von dampfleitenden Membranen	106
8.4.1 Dampfrezirkulation	107
8.4.2 Dampfüberbrückung	108
8.4.3 Simulationsergebnisse	108
8.5 Ergebnisse der Konzeptentwicklung und Simulation	110
9 Einsatz alternativer Membranmaterialien	113
9.1 Mikroporöse Membranen	113
9.1.1 Variation der H ₂ /CO ₂ -Selektivität	115
9.1.2 Variation der H ₂ /N ₂ -Selektivität	116
9.1.3 Variation der H ₂ /H ₂ O-Selektivität	117
9.2 Protonenleitende Membran	118
9.3 Ergebnisse des Einsatzes alternativer Membranen	120
10 Diskussion der Ergebnisse	121
10.1 Basiskonzepte ohne Membran	121
10.2 Zielgerichtete Konzeptfindung	121
10.3 Wirkungsgradpotential und technische Herausforderungen	123
10.4 Aussagen aus der Prozessparametervariation	124
10.5 Zusätzliche Optimierungspotentiale	124
10.5.1 Dampfrezirkulation nach dem WGS-MR	125
10.5.2 Dampfüberbrückung der Entschwefelung	125
10.6 Aussagen zu alternativen Membranmaterialien	125
10.6.1 Mikroporöse Membranen	126
10.6.2 Protonenleitende Membranen	127
11 Zusammenfassung	129
Literaturverzeichnis	133
Anhang	143
A Konstanten, Stoffgrößen und Umrechnungen	143
B Vergaser und typische Synthesegaszusammensetzungen	145
C Übersichtstabellen zur Literaturstudie	147
D Aspen Plus Grundoperatoren und Ersatzmodule	153
E Simulationsparameter	159
F Prozessschaltbilder der IGCC-Konzepte	165

I Inhaltsverzeichnis

G Stoffstromtabellen	177
H Einfluss des Brenngases auf den Gasturbinenprozess	191
Wirtschaftlichkeitsbetrachtung	193
I.1 Kapitalkosten	193
I.2 Betriebskosten	196
I.3 Brennstoff- und CO ₂ -Zertifikatskosten	197
I.4 Stromgestehungs- und CO ₂ -Vermeidungskosten	199

Die Abtrennung und Speicherung bzw. Wiederverwertung des im Abgas enthaltenen CO₂ aus fossil befeuerten Kraftwerken stellt eine Möglichkeit dar, den Ausstoß klimawirksamer Treibhausgase zu reduzieren. Als besonders aussichtsreich gilt die Integration von gastrennenden Membranreaktoren in Gas- und Dampfturbinen-Kombikraftwerke mit integrierter Kohlevergasung (IGCC = Integrated Gasification Combined Cycle), da gute Wirkungsgrade bei gleichzeitig hoher CO₂-Abtrennung ermöglicht werden. Gegenstand dieser Arbeit ist die Konzeptentwicklung und verfahrenstechnische Analyse von IGCC-Kraftwerken mit integrierten membranbasierten Abtrennverfahren. Der Fokus liegt auf der Nutzung von Synergieeffekten, um so den spezifischen energetischen Abtrennaufwand möglichst weit zu senken.

Autor:

Sebastian Schiebahn studierte an der Rheinisch-Westfälischen Technischen Hochschule Aachen (RWTH Aachen) Maschinenbau mit der Studienrichtung Verfahrenstechnik. Von 2009 bis 2012 beschäftigte er sich am Institut für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik (IEK-3) im Forschungszentrum Jülich mit der Konzeptentwicklung und Analyse von Verfahren zur CO₂-Abtrennung aus fossil befeuerten Kraftwerken, wobei der Fokus auf dem IGCC-Kraftwerkskonzept mit integrierten Gastrennmembranen lag. Der Inhalt dieses Buches wurde von der RWTH Aachen als Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigt.

Institut:

Die Forschungsaufgaben des Instituts für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik (IEK-3) sind auf die Realisierung von Hoch- und Niedertemperaturbrennstoffzellen sowie von entsprechenden Stacks oder Systemen für stationäre oder mobile Anwendungen ausgerichtet. Ferner umfassen die verfahrensund systemtechnischen Entwicklungen die Bereitstellung von Apparaten zur Brenngaserzeugung. Darüber hinaus zielt das IEK-3 auf die Bereitstellung von Anlagen zur großtechnischen Erzeugung von Wasserstoff mittels Elektrolyseuren mit Polymerelektrolytmembranen. Für eine tiefgehende Aufklärung von Strukturen und deren Wirkung sowie von energetischen Prozessketten werden die Arbeiten von physikalisch-chemischen Grundlagenuntersuchungen sowie systemanalytischen Studien der Energieverfahrenstechnik begleitet.

