

Automated Optimization Methods for Scientific Workflows in e-Science Infrastructures

Sonja Holl

Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC)

Automated Optimization Methods for Scientific Workflows in e-Science Infrastructures

Sonja Holl

Schriften des Forschungszentrums Jülich

IAS Series

Volume 24

ISSN 1868-8489

ISBN 978-3-89336-949-2

Contents

List of Figures						
Li	st of [Fables		xi		
Li	st of A	Abbrevi	iations	xiii		
Li	st of l	Publicat	tions	XV		
1	Intr	oductio	n	1		
	1.1	Scient	ific Workflows in e-Science	. 1		
	1.2	Challe	enges for Scientists Using Life Science Workflows	. 3		
	1.3	Goals	of the Thesis	. 5		
2	Concept Development for State-of-the-Art Workflow Optimization					
	2.1	Genera	al Aspects of Scientific Workflows	. 9		
		2.1.1	Scientific Workflows	. 9		
		2.1.2	Scientific Workflow Management Systems	. 12		
		2.1.3	e-Science Collaborations	. 12		
	2.2	2 General Aspects of Optimization and Learning		. 14		
		2.2.1	Mathematical Background and Notations	. 14		
		2.2.2	Different Optimization Algorithms	. 15		
		2.2.3	Design Optimization Frameworks	. 17		
	2.3 State-of-the-Art Scientific Workflow Optimiza		of-the-Art Scientific Workflow Optimization	. 18		
		2.3.1	Runtime Performance Optimization	. 18		
		2.3.2	Output Performance Optimization	. 19		
		2.3.3	Other Concepts of Workflow Modification	. 20		
	2.4	A Con	cept for Scientific Workflow Optimization	. 21		

3	Ena	bling Pa	arallel Execution in Scientific Workflow Management Systems	27		
	3.1	Investi	gation of Scientific Workflow Management Systems in e-Science .	28		
	3.2	Extens	sion of a Workflow Management System	32		
		3.2.1	The Taverna Workflow Management System	33		
		3.2.2	UNICORE Middleware	35		
		3.2.3	Architecture of the Grid Plugin	35		
		3.2.4	Development of the Grid Plugin	36		
		3.2.5	Enhanced Parallel Application Execution	38		
	3.3 Evaluation by Life Science Use Cases					
	3.4	Discussion				
	3.5	Conclu	usion	44		
4	A F	ramewo	ork for Scientific Workflow Optimization	47		
	4.1	The A	pproach of Scientific Workflow Optimization	48		
		4.1.1	A New Optimization Phase in the Scientific Workflow Life Cycle	48		
		4.1.2	Investigation of Different Optimization Levels	51		
		4.1.3	Definition of the Optimization Target	54		
	4.2	The Usability Compliance of Workflow Optimization		55		
	4.3	The Taverna Optimization Framework				
	4.4	Enabling Optimization on Distributed Computing Infrastructures .		60		
		4.4.1	Three Tier Execution Architecture	61		
		4.4.2	Implementation of Parallel Workflow Execution	62		
		4.4.3	Parallel Optimization Use Case	64		
	4.5	4.5 Discussion		64		
	4.6	Conclu	ision	65		
5	Opt	Optimization Techniques for Scientific Workflow Optimization				
	5.1	Optim	ization Techniques for Scientific Workflow Parameters	67		
		5.1.1	Genetic Algorithms	70		
		5.1.2	A Genetic Algorithm for Scientific Workflows	71		
	5.2	The Pa	arameter Optimization Plugin	72		
		5.2.1	Development of the Parameter Optimization Plugin	73		
		5.2.2	Discussion	76		
	5.3	Evalua	tion of the Parameter Optimization Plugin	76		
		5.3.1	Proteomics Workflows	77		

Bi	Bibliography									
A	Add	itional l	Figures and Descriptions	131						
	7.2	Future	Work	126						
	7.1	Summa	ary of the Work	123						
7	Con	clusion		123						
	6.2	Proven	ance-based Optimization	115						
		6.1.2	Addressing Optimization Complexity	111						
		6.1.1	General Aspects of Optimization	106						
	6.1	Examin	nation of Scientific Workflow Optimization	106						
6	Disc	ussion:	Scientific Workflow Optimization in e-Science	105						
	5.5	Conclu	sion	102						
		5.4.4	Discussion	102						
		5.4.3	The Topology Level	100						
		5.4.2	Discussion	99						
		5.4.1	The Component Level	96						
	5.4	5.4 Simulation of Workflow Structure Optimization								
		5.3.5	Discussion	94						
		5.3.4	Protein Structure Similarity Workflows	92						
		5.3.3	Biomarker Identification Workflows	89						
		5.3.2	Ecological Niche Modeling Workflows	84						

Scientific workflows have emerged as a key technology that assists scientists with the design, management, execution, sharing and reuse of *in silico* experiments. Workflow management systems simplify the management of scientific workflows by providing graphical interfaces for their development, monitoring and analysis. Nowadays, e-Science combines such workflow management systems with large-scale data and computing resources into complex research infrastructures. For instance, e-Science allows the conveyance of best practice research in collaborations by providing workflow repositories, which facilitate the sharing and reuse of scientific workflows. However, scientists are still faced with different limitations while reusing workflows. One of the most common challenges they meet is the need to select appropriate applications and their individual execution parameters. If scientists do not want to rely on default or experience-based parameters, the best-effort option is to test different workflow set-ups using either trial and error approaches or parameter sweeps. Both methods may be inefficient or time consuming respectively, especially when tuning a large number of parameters. Therefore, scientists require an effective and efficient mechanism that automatically tests different workflow set-ups in an intelligent way and will help them to improve their scientific results.

This thesis addresses the limitation described above by defining and implementing an approach for the optimization of scientific workflows. In the course of this work, scientists' needs are investigated and requirements are formulated resulting in an appropriate optimization concept. This concept is prototypically implemented by extending a workflow management system with an optimization framework. This implementation and therewith the general approach of workflow optimization is experimentally verified by four use cases in the life science domain. Finally, a new collaboration-based approach is introduced that harnesses optimization provenance to make optimization faster and more robust in the future.

This publication was written at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.

IAS Series Volume 24 ISBN 978-3-89336-949-2

