

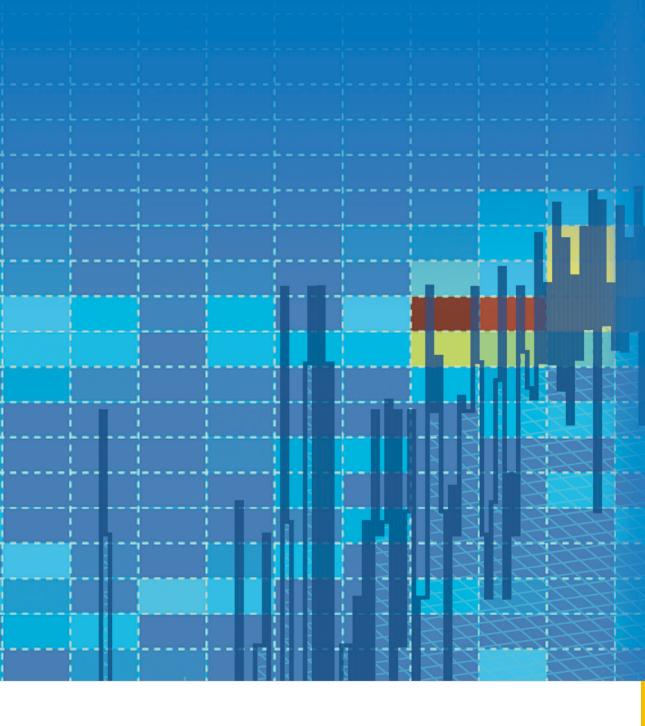
SGSreco – Radiologische Charakterisierung von Abfallfässern durch Segmentierte γ -Scan Messungen

Thomas Heinrich Krings

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung Nukleare Entsorgung und Reaktorsicherheit (IEK-6)

SGSreco – Radiologische Charakterisierung von Abfallfässern durch Segmentierte γ -Scan Messungen

Thomas Heinrich Krings


Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Inhaltsverzeichnis

		Kurzzusammenfassung	iv
		Abstract	v
		Abkürzungsverzeichnis	xi
1	Endla	agerung radioaktiver Abfälle in der Bundesrepublik Deutschland	1
	1.1	Ziele der Endlagerung	2
	1.2	Klassifizierung von radioaktiven Abfällen	3
	1.3	Stand der Endlagerung weltweit	3
	1.4	Bestand und Prognosen für konditionierte Abfälle	4
	1.5	Endlagerung wärmeentwickelnder Abfälle	6
	1.6	Endlagerung vernachlässigbar wärmeentwickelnder Abfälle	8
2	Radio	ologische Anforderung an Abfälle für das Endlager Konrad	11
	2.1	Konditionierung radioaktiver Abfälle	12
	2.2	Anforderungen aus den Endlagerungsbedingungen	12
	2.3	Produktkontrolle von radiologischen Anforderungen	15
	2.4	Notwendigkeit der experimentellen radiologischen Charakterisierung	16
3	Grundlagen der zerstörungsfreien Charakterisierung von Abfallfässern		
	3.1	Zerstörende und zerstörungsfreie Messverfahren	20
	3.2	Reichweite von α - und β -Strahlung in Materie	22
	3.3	Wechselwirkung von γ -Strahlung in Materie	23
	3.4	Abschwächung von γ -Strahlung	28
	3.5	γ -spektrometrische Messsysteme	30
	3.6	Schlüsselnuklide und Skalierungsverfahren	34
4	Stand	l von Wissenschaft und Technik bei γ -Scan Messverfahren	37
•		Ziele von γ -Scan Messungen	38
	4.1 4.2	Integrale γ -Scan Messungverfahren (IGS)	30 38
	4.2	Segmentierte γ-Scan Messverfahren (SGS)	40
	4·3 4·4	Kalibrationsbedingungen und Aktivitätsrekonstruktion beim SGS	43
	4.5	Korrekturmethoden bei Abweichungen von den Kalibrationsbedingungen	47

5	γ -spektrometrische Simulationen mit Geant4				
	5.1	Notwendigkeit γ -spektrometrischer Simulationen	52		
	5.2	Monte Carlo Methoden	52		
	5.3	Das Geant4-Framework	53		
	5.4	Livermore-Modelle für Photonen und Elektronen	54		
	5.5	Applikation für γ -spektrometrische Simulationen	56		
6	Segmentiertes γ -Scan Messungen am Forschungszentrum Jülich				
	6.1	Das SGS-Messsystem Gernod II	60		
	6.2	Routineeinstellungen für SGS-Messungen von konditionierten Abfällen	62		
	6.3	Effizienzkalibration des Detektionssystems	62		
	6.4	Detektorimplementation und Simulation von SGS-Messungen in Geant4	64		
	6.5	Quantifizierung der Einhaltung von Kalibrationsbedingungen	66		
7	SGSr	reco	69		
	7.1	Motivation, Konzept und Kalibrationsbedingungen	70		
	7.2	Input und Datenbanken	71		
	7·3	Berechnung von Zählratenverteilungen	74		
	, ,	7.3.1 Numerische Berechnung des effektiven Raumwinkels	76		
		7.3.2 Analytische Berechnung des effektiven Raumwinkels	79		
		7.3.3 Implementation in SGSreco	83		
		7.3.4 Modellvalidierung	84		
		7.3.5 Gittergröße für die numerische Berechnung des effektiven Raumwinkels	89		
	7.4	Aktivitätsberechnung bei homogenen Radionuklidinventaren	90		
	7.5	Rekonstruktionsalgorithmus	91		
	7.6	Statistische und systematische Unsicherheiten	95		
	7.7	Nachweisgrenzen - Maximal nicht-detektierbare Aktivitäten	96		
8	Reko	nstruktion homogener Radionuklidinventare	101		
	8.1	Parameter- und Benchmarkstudie anhand von Simulationen	102		
		8.1.1 Simulationssets	102		
		8.1.2 Integrationsgrenzen	103		
		8.1.3 Optimale Gittergröße und Rechenzeit	105		
		8.1.4 Benchmarkstudie	108		
	8.2	Validierung anhand eines konditionierten Referenzfasses	108		
9	Reko	nstruktion heterogener Radionuklidinventare - Simulationsstudie	111		
	9.1	Zielsetzung	112		
	9.2	Simulationssets	112		
	9.3	Anzahl an erforderlichen χ^2 -Iterationen	114		
	9.4	Benchmarkberechnungen bei einer Punktquelle	115		
	9.5	Systematikstudie zum Einfluss des Scanmodus	120		
	9.6	Modellwahl, statistische Unsicherheiten und Rechenzeiten	123		
	9.7	Benchmarkberechnung bei unbekannten Matrixdichten	127		

	9.8	Benchmarkberechnung bei Ensembles aus mehreren Punktquellen	128
	9.9	Evaluation eines Gütekriteriums	132
	9.10	Systematikstudie für ausgedehnte Quellen	133
	9.11	Maximal nicht-detektierbare Aktivitäten	136
10	Rek	onstruktion heterogener Radionuklidinventare - Messstudie	139
	10.1	Testfassabschnitt und Prüfstrahler	140
	10.2	Rekonstruktion von einzelnen Quellen	142
	10.3	Vergleiche zwischen Standard- und Alternativscanmodus	144
	10.4	Rekonstruktion von Ensembles zweier Quellen	145
	10.5	Rekonstruktion von abgeschirmten Quellen	147
	10.6	Anwendung bei konditionierten Abfallfässern	150
11	Entv	vicklungspotential für γ -spektrometrische Messverfahren	153
	11.1	LaBr ₃ -Detektoren in SGS-Messsystemen	154
	11.2	Transmissionskorrigierte SGS-Messungen	155
12	Zusa	nmmenfassung - Leistungsfähigkeit von SGSreco	157
A	Dekla	arationspflichtige Radionuklide für das Endlager Konrad	161
В	Ergeb	onisse aus der Reanalyse von realen Abfallfässern mit SGSreco	167
		Abbildungsverzeichnis	I
		Tabellenverzeichnis	V
		Literaturverzeichnis	VII
		Danksagung	XIII

Energie & Umwelt / Energy & Environment Band / Volume 208 ISBN 978-3-89336-945-4

