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Plasma systems that can be experimentally studied today are reaching from hot, low-density
plasmas of fusion research to cold dense solids that are dominated by quantum-mechanical
effects and strong correlations. Their consistent theoretical description requires a multitude
of effects to be considered. In particular, strong correlations pose significant difficulties here.
Computer simulations provide a tool for bridging between experiments and theory as they do not
suffer from these complications.

The experimentally accessible optical and transport properties in plasmas are primarily
featured by the electronic subsystem, such as its collective behavior and interaction with the ionic
background, i.e. Coulomb collisions. In this work the collisional behavior of warm dense bulk
matter and collective effects in nano plasmas are investigated by means of molecular dynamics
simulations. To this end, simulation experiments performed earlier on electronic resonances
in metallic nano clusters are extended to significantly larger systems. The observed complex res-
onance structure is analyzed using a newly introduced spatially resolved spectral diagnostic. As a
second field of study, the bulk collision frequency as the key parameter for optical and transport
properties in warm dense matter is evaluated in a generalized Drude approach for a hydrogen-like
plasma. Here, the combined high-field and strong coupling regime that is only scarcely covered
by theoretical models is of primary interest.

To solve the underlying N-body problem for both applications, a highly parallel Barnes-Hut
tree code is utilized and considerably extended with respect to functionality, versatility, and scala-
bility. With its new excellent scalability to hundred thousands of processors and simulation setups
consisting of up to billions of particles and its support for periodic boundary conditions with an
efficient and precise real-space approach it delivers highly resolved results and is prepared for
further studies on the warm dense matter regime. Here, its unique predictive capabilities can
finally be used for connecting to real-world experiments.

This publication was written at the Julich Supercomputing Centre (JSC) which is an integral part
of the Institute for Advanced Simulation (IAS). The IAS combines the Jilich simulation sciences
and the supercomputer facility in one organizational unit. It includes those parts of the scientific
institutes at Forschungszentrum Jllich which use simulation on supercomputers as their main
research methodology.
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