

Tiefentschwefelung von Flugturbinenkraftstoffen für die Anwendung in mobilen Brennstoffzellensystemen

Yong Wang

Forschungszentrum Jülich GmbH Institut für Energie- und Klimaforschung (IEK) Elektrochemische Verfahrenstechnik (IEK-3)

Tiefentschwefelung von Flugturbinenkraftstoffen für die Anwendung in mobilen Brennstoffzellensystemen

Yong Wang

Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment

Inhaltsverzeichnis

1	Einl	eitung und Zielsetzung	1
	1.1	Problemstellung	1
	1.2	Zielsetzung und Übersicht	4
2	Brei	nnstoffzellensystem	5
	2.1	Anwendungen der Brennstoffzellen für APU-Systeme	5
	2.2	Mitteldestillate	5
		2.2.1 Kraftstoffe aus Erdöl	5
		2.2.2 Kerosinkraftstoff	6
		2.2.3 Dieselkraftstoffe und extra leichtflüssiges Heizöl	8
			9
	2.3	Brenngaserzeugung	
	2.4	Anforderungen an die Entschwefelung	2
3	Gru	ndlagen und Technik der Entschwefelungsverfahren 1	5
	3.1	Kommerzielle Prozesse	5
		3.1.1 Hydrierende Entschwefelung	5
		3.1.2 Der S-Zorb	8
	3.2	Innovative Ansätze	0
		3.2.1 Chemische Umwandelung	0
		3.2.2 Biologische Umwandelung	3
		3.2.3 Physikalische Trennung	4
		3.2.4 Thermische Trennung	4
		3.2.5 Zusammenfassung	7
4	Ents	schwefelungsprozesse für mobile Anwendungen 2	9
	4.1	Membran	9
		4.1.1 Grundlagen	9
		4.1.2 Mathematische Modellierung	0
		4.1.3 Pervaporation	1
		4.1.4 Stand der Technik	3
		4.1.5 Bewertung und Diskussion	6
	4.2	Adsorption	7
		4.2.1 Grundlagen	7

Inhaltsverzeichnis

		4.2.2 Thermodynamik der Adsorption	38
		4.2.3 Kinetik der Adsorption	39
		4.2.4 Dynamik der Adsorption	39
		4.2.5 Stand der Technik	41
		4.2.6 Bewertung und Diskussion	44
	4.3	Hydrierende Entschwefelung mit Vorsättiger	45
		4.3.1 Grundlagen	45
		4.3.2 Stand der Technik	47
		4.3.3 Bewertung und Diskussion	47
5	Ang	gewendete Analysemethoden	49
	5.1	Bestimmung der Gesamtschwefelkonzentration von Kraftstoffproben	50
	5.2	Identifizierung einzelner Schwefelkomponenten	50
	5.3	Charakterisierung der eingesetzten Kraftstoffe	51
	5.4	Statistische Versuchsplanung	52
	5.5	Fehlerrechnung und Konfidenzintervall	53
6	Ехр	erimentelle Untersuchungen zum Membranverfahren	55
	6.1	Aufbau der Versuchsanlage	56
	6.2	Versuchsdurchführung am Teststand	57
	6.3	Screening der unterschiedlichen Membranen	58
	6.4	Charakterisierung der Polymermembran M-6	61
		6.4.1 Screening der unterschiedlichen Kraftstoffe	61
		6.4.2 Untersuchung zur Selektivität mit Modellkraftstoffen	63
		6.4.3 Optimierung der Versuchsbedingungen mit Jet A-1	64
		6.4.4 Charakterisierung der Regenerierbarkeit und Dauerhaltbarkeit	70
	6.5	Charakterisierung der Polymermembran M-9	77
		6.5.1 Screening der unterschiedlichen Kraftstoffe	77
		6.5.2 Modifizierte Membranmaterialien	78
		6.5.3 Charakterisierung der Dauerhaltbarkeit	79
	6.6	Zusammenfassung und Diskussion	79
7	Ехр	erimentelle Untersuchungen zur adsorptiven Entschwefelung	81
	7.1	Aufbau der Versuchsanlage zur Festbettadsorption	81
	7.2	Versuchsdurchführung und Darstellung der Durchbruchskurve	83
	7.3	Screening der unterschiedlichen Adsorbentien	86
	7.4	Charakterisierung der Entschwefelungsleistung des Adsorbens A-12	89
		7.4.1 Thermodynamische und kinetische Untersuchungen	89
		7.4.2 Optimierung der Adsorptionsparameter	94
		7.4.3 Optimierung der Regenerationsparameter	
		7.4.4 Regeneration der beladenen Adsorbentien mit unterschiedlichen Gasmedien 1	
		7.4.5 Optimierung der Reaktorgeometrie	
		7.4.6 Screening von unterschiedlichen Kraftstoffen	0
		7.4.7 Charaktericierung der Dauerhaltharkeit	Ο.

	7.5	Zusammenfassung und Diskussion							
8	Ехр	erimentelle Untersuchungen zum Hydrofiner 111							
	8.1	Aufbau der Versuchsanlage							
	8.2	Versuchsdurchführung							
	8.3	Löslichkeit von Reformatgas in Kerosin							
	8.4	Charakterisierung der Entschwefelungsleistung der HDS-Anlage							
		8.4.1 Optimierung der Betriebsbedingungen mit Jet A-1							
		8.4.2 Entschwefelung mit Wasserstoff und Reformatgas							
		8.4.3 Einfluss der Raumgeschwindigkeit auf die Entschwefelung							
		8.4.4 Entschwefelung von zwei unterschiedlichen Kraftstoffen							
		8.4.5 Spülen des Produktes mit Stickstoff							
		8.4.6 Bestätigung der Lageunabhängigkeit des HDS-Reaktors							
		8.4.7 Charakterisierung der Dauerhaltbarkeit							
	8.5	Zusammenfassung und Diskussion							
_									
9		lellierung und Simulation zur Berechnung des Energiebedarfs 131							
	9.1	Pervaporation							
		9.1.1 Eingangsparameter							
		9.1.2 Massen- und Energiebilanz							
		9.1.3 Simulation der Pervaporation mit PRO/II							
		9.1.4 Thermischer und elektrischer Energiebedarf							
	9.2	Adsorption							
		9.2.1 Eingangsparameter							
		9.2.2 Massenbilanz							
		9.2.3 Energiebilanz des Teilschritts							
		9.2.4 Modellierung und Simulation mit MATLAB/Simulink							
		9.2.5 Thermischer und elektrischer Energiebedarf							
	9.3	Hydrierende Entschwefelung mit Vorsättiger							
		9.3.1 Eingangsparameter							
		9.3.2 Massen- und Energiebilanz							
		9.3.3 Simulationsrechnung des Energiebedarfs							
		9.3.4 Thermischer und elektrischer Energiebedarf							
	9.4	Zusammenfassung und Diskussion							
10	Verf	ahrenstechnische Analyse und Bewertung 161							
		Prozessauslegung							
		Vergleich und Bewertung des Gesamtprozesses							
		10.2.1 Entschwefelungsleistung							
		10.2.2 Zuzuführender Kraftstoffstrom							
		10.2.3 Energieaufwand							
		10.2.4 Baugröße							
		10.2.5 Lebensdauer							
	10.3	Zusammenfassung und Diskussion							
	10.0	_usammomassung unu biskussion							

Inhaltsverzeichnis

11 Zusammenfassung und Ausblick	171	
11.1 Übersicht	171	
11.2 Fazit und Ausblick	172	
Literaturverzeichnis	175	
Abbildungsverzeichnis	187	
Tabellenverzeichnis	193	
Nomenklatur	195	
Anhang	199	

Kurzzusammenfassung:

Aufgrund erhöhter Leistungsfähigkeit und geringer Schadstoffemissionen sind Brennstoffzellen betriebene Stromaggregate vielversprechend für die Bordstromversorgung in LKW, Schienenfahrzeugen, Flugzeugen und Schiffen. Zum Betrieb der Brennstoffzellen mit dem an Bord verfügbaren Kraftstoff werden eine katalytische Reformierung und nachgeschaltete Gasaufbereitungsschritte verwendet. Dafür ist eine Entschwefelung des Kraftstoffs an Bord notwendige Voraussetzung. Das vorliegende Buch befasst sich mit theoretischen, experimentellen und analytischen Untersuchungen zur Entwicklung eines technisch relevanten Tiefentschwefelungsprozesses für Brennstoffzellensysteme mit einer elektrischen Leistung von 5 kW.

Autor:

Yong Wang studierte an der Universität Paderborn Maschinenbau mit der Studienrichtung Energie- und Verfahrenstechnik. Seit 2009 beschäftigt er sich am Institut für Energie- und Verfahrenstechnik (IEK-3) im Forschungszentrum Jülich mit der Tiefentschwefelung von Flugturbinenkraftstoffen für die Anwendung in mobilen Brennstoffzellensystemen. Der Inhalt dieses Buchs wurde von der Fakultät für Maschinenwesen der RWTH Aachen als Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigt.

Institut:

Die Forschungsaufgaben des Instituts für Energie- und Klimaforschung – Elektrochemische Verfahrenstechnik (IEK-3) sind auf die Realisierung von Hoch- und Niedertemperatur-Brennstoffzellen sowie von entsprechenden Stacks und Systemen für stationäre oder mobile Anwendungen ausgerichtet. Ferner umfassen die verfahrensund systemtechnischen Entwicklungen die Bereitstellung von Apparaten zur Brenngaserzeugung. Diese Arbeiten werden von physikalisch-chemischen Grundlagenuntersuchungen sowie systematischen Studien der Energieverfahrenstechnik begleitet.

