


Hierarchical Methods for Dynamics in Complex Molecular Systems Lecture Notes

edited by Johannes Grotendorst, Godehard Sutmann, Gerhard Gompper, Dominik Marx

Forschungszentrum Jülich GmbH Institute for Advanced Simulation (IAS) Jülich Supercomputing Centre (JSC)

Hierarchical Methods for Dynamics in Complex Molecular Systems

edited by Johannes Grotendorst, Godehard Sutmann, Gerhard Gompper, Dominik Marx

IAS Winter School, 5 – 9 March 2012 Forschungszentrum Jülich GmbH Lecture Notes

Schriften des Forschungszentrums Jülich

IAS Series

Volume 10

ISSN 1868-8489

ISBN 978-3-89336-768-9

Contents

Hard and Soft Materials

Simula	ating Light-Induced Phenomena in Soft Matter	
Nikos	L. Doltsinis	1
1	Introduction	1
2	Theoretical Background	4
3	Results and Discussion	22
4	Summary and Outlook	37
	ition Path Sampling of Phase Transitions – Nucleation and Growth in ials Hard and Soft	
Micha	el Grünwald, Swetlana Jungblut, Christoph Dellago	47
1	Introduction	47
2	Fundamentals of Transition Path Sampling	50
3	Kinetics	57
4	Identifying the Transition Mechanism	62
5	Applications	66
6	Conclusion and Outlook	75
Neura	l Network Potentials for Efficient Large-Scale Molecular Dynamics	
Jörg B	ehler	81
1	Introduction	81
2	Neural Networks	83
3	High-Dimensional Neural Network Potentials	93
4	Discussion	96
5	Conclusions	100
	-Scale Molecular Dynamics Studies and Scale-Bridging Models for	
Defori	nation and Failure of Materials	
Alexan	nder Hartmaier	107
1	Introduction	107
2	Large-Scale Molecular Dynamics Simulations	108
3	Scale-Bridging Models	110
4	Concluding Remarks	112

Biomolecular Systems

Biom	olecular Systems	
Explora Dynam	ation of Multi-Dimensional Free Energy Landscapes in Molecular ics	
Mark E.	Tuckerman	115
1	Introduction	115
2	Adiabatic Free Energy Molecular Dynamics and Temperature-Accelerated	-
	Molecular Dynamics	117
3	Long Time-Step Molecular Dynamics	126
Method	ls on TDDFT-Based Nonadiabatic Dynamics with Applications	
Ivano Ta	avernelli	139
1	Introduction	139
2	Mixed Quantum-Classical Nonadiabatic Molecular Dynamics: A TDDFT-	
	Based Prospective	140
3	TDDFT Quantities for Nonadiabatic Dynamics	152
	Car-Parrinello Molecular Dynamics / Molecular Mechanics tions: A Powerful Tool for the Investigation of Biological Systems	
Emilian	o Ippoliti, Jens Dreyer, Paolo Carloni, Ursula Röthlisberger	163
1	Introduction	163
2	Methods	164
3	Applications to Biological Systems	173
4	Concluding Remarks	175
Simulat Process	tion Techniques for Studying the Impact of Force on (Bio)chemical es	
Frauke	Graeter, Wenjin Li	183
1	Introduction: How Force Affects Chemical Bonds	183
2	Methods	184
3	Application: Disulphide Bond Reduction	189
4	Outlook	192
Coarse	Grained Models for Multiscale Simulations of Biomolecular Systems	
Christin	ne Peter	195
1	Introduction	195
2	Deriving CG Interaction Potentials	196
3	Systematic Coarse Graining: Challenges	207
	e-Based Dynamics Simulations of Multi-Protein Systems and Cellular rtments	
-	d Helms, Po-Hsien Lee, Tihamér Geyer	219
1	Introduction	219
2	Coarse-Grained Simulations of Proteins	220
3	Applications	224
4	Summary and Outlook	231

Advanced Methods

	thmic Rethinking and Code Reengineering for Truly Massively Parallel	
	o Molecular Dynamics Simulations	
Costas	Bekas, Alessandro Curioni	235
1	Introduction	235
2	Task Groups Strategy for 3D Parallel FFTs	236
3	Large Scale Wavefunction Orthogonalization	241
4	Initialization from Atomic Orbitals	259
5	Discussion	267
	quilibrium Molecular Dynamics for Biomolecular Systems Using Fluc-	
	a Theorems	200
	d Hummer	269
1	Introduction	269
2	Equilibrium Thermodynamics from Non-Equilibrium Simulations and Ex-	
2	periments	270
3	Concluding Remarks	276
Multig	rid QM/MM Approaches in <i>ab initio</i> Molecular Dynamics	
Teodor	o Laino	279
1	Introduction	279
2	Renormalization of the QM/MM Hamiltonian	281
3	Wave-Function Optimization	286
4	QM/MM Coupling for Isolated Systems	290
5	Extension to Periodic Boundary Conditions	293
6	Tests and Applications	300
7	QM/MM Study on Silica: Motivation	303
8	Conclusion	312
Accele	rated Molecular Dynamics Methods	
Danny	Perez, Blas. P. Uberuaga, Arthur F. Voter	329
1	Background	330
2	Parallel-Replica Dynamics	334
3	Hyperdynamics	336
4	Temperature Accelerated Dynamics	338
5	Choosing the Right AMD Method	342
6	Conclusion	343

Tracking the Dynamics of Systems E	volving through	Infrequent	Transitions in
a Network of Discrete States			

Doros N	I. Theodorou	347
1	Introduction	347
2	Identifying States	349
3	Calculating Rate Constants	351
4	Kinetic Monte Carlo Simulation	361
5	Analytical Solution of the Master Equation	362
6	Example: Diffusion of Xenon in Silicalite	365
7	Example: Diffusion of CO_2 in Poly(amide imide)	371
8	Dynamic Integration of a Markovian Web and its Application to Structural	
	Relaxation in Glasses	376
9	Lumping	382
10	Summary	384

Adaptive Resolution Molecular Dynamics: Extension to Quantum Problems 391 Luigi Delle Site Introduction 391 1 2 The AdResS Method 392 3 Quantum-Classical Adaptive Resolution: The Conceptual Problem 394 4 395 Path Integral Molecular Dynamics Quantum-Classical Adaptive Resolution Simulation via PIMD 5 398 400

6 **Conclusions and Perspectives**

Flow Simulation and Transport

Coupling Molecular Dynamics and Lattice Boltzmann to Simulate Brownian Motion with Hydrodynamic Interactions

Burkhard Dünweg

rkhard Dünweg		403
1	Introduction	403
2	Coupling Scheme	405
3	Low Mach Number Physics	407
4	Lattice Boltzmann 1: Statistical Mechanics	407
5	Lattice Boltzmann 2: Stochastic Collisions	410
6	Lattice Boltzmann 3: Chapman–Enskog Expansion	410
7	A Polymer Chain in Solvent	412

Flow S	imulations with Multiparticle Collision Dynamics	
Rolana	l G. Winkler	417
1	Introduction	417
2	Multiparticle Collision Dynamics	418
3	Embedded Objects and Boundary Conditions	420
4	Cell-Level Canonical Thermostat	421
5	Transport Coefficients	423
6	MPC without Hydrodynamics	431
7	External Fields	431
8	Hydrodynamic Simulations of Polymers in Flow Fields	436
9	Conclusions	440
Dissipa	ative Particle Dynamics	
Pep Es	pañol	445
1	Introduction	445
2	The Meaning of a Dissipative Particle	446
3	DPD for Unbounded Atoms: The Simulation of Simple Fluids	447
4	Two Technical Points: Integrators and Boundary Conditions	456
5	Microscopic Foundation of DPD	457
6	Conclusion	462
Large	Scale Simulations of Blood Flows with Coarse-Grained Cells	
Simone	e Melchionna	469
1	Introduction	469
2	Solvent Representation	470
3	Diffused Particle Model (DPM)	472
4	Solid Particle Model (SPM)	480
5	Excluded Volume Interactions	484
6	Conclusions	486
Simula	ations of Blood Flow on the Cell Scale	
Dmitry	A. Fedosov	489
1	Introduction	489
2	Red Blood Cells	490
3	Methods and Models	491
4	Simulation Results and Discussion	499
5	Summary	506

w Simulatia ns with Multinarticle Collision D momio

Parallel Computing and Numerical Methods

Introd	uction to Parallel Computing	
Bernd	Mohr	511
1	Introduction	511
2	Programming Models	514
3	MPI	516
4	OpenMP	519
5	Parallel Debugging	520
6	Parallel Performance Analysis	520
7	Summary	522
Scalab	ility of $\mu arphi$ and the Parallel Algebraic Multigrid Solver of DUNE-ISTL	
Olaf Ip	ppisch, Markus Blatt	527
1	Introduction	527
2	Algebraic Multigrid as Parallel Linear Solver	527
3	Test Cases	528
4	Results	529
Highly	Parallel Geometric Multigrid Algorithm for Hierarchical Hybrid Grids	
Björn	Gmeiner, Tobias Gradl, Harald Köstler, Ulrich Rüde	533
1	Introduction	533
2	Grid Partitioning and the Coarsest Grids	535
3	Scaling on JUGENE	536

3	Scaling on JUGENE	536
4	Conclusions and Future Work	539

The focus of this Winter School was on hierarchical methods for dynamical problems having primarily in mind systems described in terms of many atoms or molecules. One end of relevant time scales certainly is nonadiabatic quantum dynamics methods, which operate on the subfemtosecond time scale but influence dynamical events that are orders of magnitude slower. Examples for such phenomena might be photoinduced switching of individual molecules, which results into large-amplitude relaxation in liquids or photodriven phase transitions of liquid crystals. On the other end of the relevant time scales methods are important to investigate and understand the non-equilibrium dynamics of complex fluids, with typical time scales in the range from microseconds to seconds. Examples are the flow of polymer solutions, or the flow of blood through microvessels.

The Lecture Notes contain state-of-the-art information on methodological foundations and methods coming from materials science, soft matter, life science and fluid dynamics. In addition to introducing discipline-specific methods, modern numerical algorithms and parallel programming techniques are presented in detail.

This publication was edited at the Jülich Supercomputing Centre (JSC) which is an integral part of the Institute for Advanced Simulation (IAS). The IAS combines the Jülich simulation sciences and the supercomputer facility in one organizational unit. It includes those parts of the scientific institutes at Forschungszentrum Jülich which use simulation on supercomputers as their main research methodology.

IAS Series Volume 10 ISBN 978-3-89336-768-9

