Table of Contents

Introduction

Background of the contaminated groundwater in Bitterfeld (Germany)	1
Constructed wetlands and removal mechanisms for organic pollutants	3
1. Definition of constructed wetlands	3
2. Removal mechanisms for organic pollutants	3
Volatilization	3
Removal mechanisms in substrate – sorption	4
Removal mechanisms relevant for macrophytes	4
Microbial degradation of organic pollutants – biodegradation	5
Monochlorobenzene and its removal mechanisms	7
Microbiological methods in microbial studies for constructed wetlands	9
DNA microarray technology	11
1. Definition of DNA microarray	11
2. Procedures of functional gene arrays analysis	12
3. DNA extraction from environmental samples	14
Aim of this work	15

Materials

19

The constructed wetlands in Bitterfeld (Germany)	19
Physical and chemical characterizations of the constructed wetlands	19
1. In-situ measurements of the constructed wetlands	19
2. Ions in the constructed wetlands	20
3. Organic pollutants in groundwater samples from the constructed wetlands	21
Functional gene arrays	21
Fluorescent substances	23
1. Cy5	23
2. PicoGreen	24
3. SYBR Green I	24

Size standards	24
Oligonucleotides	25
Chemical reagents	25
Solutions and buffers	27
1. Solutions and buffers for the DGGE analysis	27
2. Solutions for the FGA analysis	27
3. Other solutions and buffers	27
Kits	28
Apparatus and instruments	28
1. Apparatus for the FGA analysis	28
2. Apparatus for the DGGE analysis	28
3. Other apparatus	28
4. Technical instruments	29
Softwares	29

Methods

31

Sampling	31
Chemical methods	31
1. Water content of soil samples	31
2. Identification of chemicals using Gas Chromatography-Mass Spectrometry.	31
Microbiological and molecular methods	33
1. Fluorescent microscopic enumeration of bacteria	33
2. DNA extraction	34
3. DNA purification	
Primary plan for DNA purification	34
DNA purification using gel filtration column	34
4. DNA quantification	36
DNA quantification using spectrophotometer	36
DNA quantification using PicoGreen assay	36
5. DNA amplification	36
Rolling circle amplification (RCA)	36
Whole genome amplification (WGA)	37

PCR amplification for DGGE analysis	37
Group-specific PCR amplification – nested PCR	37
6. Denaturing gradient gel electrophoresis (DGGE)	38
7. Microarray techniques	39
Labeling	39
Hybridization	39
Data analysis	40
Statistical methods	41

Results

43

Part 1: Evaluation of suitable DNA preparation procedures

DNA extraction and purification of the wetlands samples	43
1. Evaluation of the primary plan of DNA extraction and purification	43
2. Removal of humic substances by gel filtration column purification	43
Evaluation of three commercial DNA extraction kits	46
1. Purity and quantity of DNA extracts and their PCR performance	46
2. Application of their DNA extracts in the DGGE analysis	47
3. Application of their DNA extracts in the microarray analysis	48
Evaluation of the whole genome amplification	51

Part 2: Influences of plant/seasons on bacterial function and community structures in constructed wetlands (Bitterfeld, Germany)

Physiochemical characterization of soil samples	53
Removal efficiencies of main organic pollutants and of some ions	55
1. Removal efficiencies of main organic pollutants in groundwater samples	55
2. Chemical analysis of sulfate in groundwater samples	55
Influences of plant/seasons on total bacterial abundance in constructed	
wetlands	56
Influences of plant/seasons on bacterial community compositions	57
1. Influence of plants on bacterial community compositions	57
2. Influence of seasonal changes on bacterial community compositions	59

Influences of plant/seasons on bacterial function and community	
structures in constructed wetlands – An overview	62
1. Evaluation of changed genes under influences of plant/seasons	63
Differences between the planted and unplanted CWs in summer	67
Differences between the planted and unplanted CWs in winter	69
Seasonal difference in the planted wetland	71
Seasonal difference in the unplanted wetland	74
2. Evaluation of unchanged genes under influences of plant/seasons	76
Influences on degradation potential of monochlorobenzene and other	
related processes prevailing in the constructed wetlands	79
1. Evaluation about detection efficiencies of gene- and group-specific probes	79
2. Genetic potential of the ortho-pathway for MCB degradation under	
influences of plant/seasons	81
3. Genetic potential of C-degradation under influences of plant/seasons	85
4. Potential of sulfate reduction under influences of plant/seasons	89

Discussion

	Evaluation of a suitable DNA preparation procedure for subsequent analyses.
	Evaluation of other DNA preparation procedures for the microarray analysis.
	 Failure of the DNA purification by using the gel filtration Biases of bacterial community compositions caused by the whole genome amplification
Part 2: In in	fluences of plant/seasons on bacterial function and community structures the constructed wetlands in Bitterfeld (Germany)
	Variations of environmental factors under influences of plant/seasons Influences of plant/seasons on bacterial functions in the constructed
	wetlands in Bitterfeld
	1 Influences of plant/seasons on general bacterial functions

2. Three types of functional genes in terms of their changing forms	102
3. Agreements and disagreements between genetic degradation potential and	
removal efficiencies of bacterial processes	104
4. Evidences in previous studies supporting results obtained by the GeoChip	
analysis	105
Genetic potential of the ortho-pathway of MCB degradation in the	
constructed wetlands in Bitterfeld (Germany)	105
Influences of plant/seasons on bacterial community structures in the	
constructed wetlands (Bitterfeld)	107
1. Statistically insignificant differences in total bacterial abundance under	
influences of plant/seasons	107
2. Detection of relatively enormous shifts of bacterial community	
compositions between the planted and the unplanted CW and seasonally in	
the unplanted CW	108
3. Bacterial responses to variations of environmental conditions: changes in	
abundance of existing populations or in diversity	109
Significant differences in abundance of existing bacterial phylum	
groups under influences of plant/seasons	110
Different indications of bacterial community compositions within	
bacterial phylum groups insignificantly changed under influences	
of plant/seasons	111
Relationship between bacterial responses and variations of	
environmental factors caused by plant/seasons	112
4. Three responses of bacterial populations to the varying environmental	
conditions and the r-/K-selection theory	114
5. Explanation of the observations in this study with aspects of microbial	
ecology	115
Changing forms of bacterial processes with variations of	
environmental factors caused by plant/seasons	115
Preferences of the changing forms in different samples	116
Explanations for observations in the ortho-pathway of MCB	
degradation	118
Degradation efficiency, genetic degradation potential and influences of	
plant/seasons	118

1. Degradation efficiency and genetic degradation potential	118
2. Influences of plants	120
3. Influences of seasons	123
Application of the GeoChip in the microbial study – Advantages,	
disadvantages and outlooks	123
1. Advantages and disadvantages of the GeoChip analysis	124

Summary

127

Literatures	131
	1.40
Appendix	149

A-I. Evaluations about modifications of the Bio101 protocol to improve	
the purity of their DNA extracts	149
A-II. Evaluation of an effective protocol for the GenomiPhi V2	
Amplification Kit	152
A-III. Evaluation of suitable preparing method for soil samples prior to	
the fluorescent microscopic enumeration	154
A class could decouver to 157	
Acknowledgements 15/	