Inhaltsverzeichnis

1	Ein	leitung	1					
	1.1	Wasser in der Atmosphäre	1					
	1.2	Verfahren zur Feuchtemessung und Datenqualität	3					
	1.3	Forschungsflugzeug HALO	5					
	1.4	Entwicklung des "Hygrometer for Atmospheric Investigations"	5					
2	Abs	bsorptionsspektroskopie 7						
	2.1	Energieeigenwerte von Molekülen	7					
		2.1.1 Rotationsschwingungsspektrum des H_2O -Moleküls	8					
	2.2	Linienbreiten	10					
		2.2.1 Natürliche Linienbreite	10					
		2.2.2 Doppler-Verbreiterung	11					
		2.2.3 Stoßverbreiterung	11					
		2.2.4 Voigt-Profilfunktion	12					
	2.3	Direkte Absorptionsspektroskopie	13					
		2.3.1 Das Lambert-Beer'sche Gesetz	13					
		2.3.2 Tunable Diode Laser Absorption Spectroscopy	14					
3	Fun	Funktionsprinzip des fasergekoppelten DFB-Lasers						
	3.1	Entwicklung der Laserdiode	17					
	3.2	Funktionsprinzip eines Diodenlasers	17					
	3.3	Weiterentwicklung zum "Distributed Feedback Laser"	18					
	3.4	Statische Wellenlängenabstimmung	19					
	3.5	Dynamische Wellenlängenabstimmung	20					
	3.6	Entwicklung der Glasfaser	21					
	3.7	Funktionsprinzip einer Glasfaser	22					
	3.8	Charakterisierung von "Single-Mode" Glasfasern	22					
4	Kor	nzept des HAI Hygrometers und Integration in HALO	25					
	4.1	Aufteilung der Hygrometerkomponenten	26					
	4.2	Einbauposition der offenen Messzelle	27					
	4.3	Position und Aufbau des Rack-Einschubs	29					
		4.3.1 HALO-Standard-Rack	29					
		4.3.2 Aufbau des HAI Rack-Einschubs	29					
	4.4	HAI Spektrometermessdaten	32					
		4.4.1 Auswahl geeigneter Absorptionslinien	32					

INHALTSVERZEICHNIS

		4.4.2	Datenauswertung	33				
5 I	Lase	ertechi	nik für den freistrahlenden 2596 nm Laser	35				
5	5.1	Laserc	harakterisierung	35				
		5.1.1	Leistung - Strom/Temperatur Charakteristik	36				
		5.1.2	Statische Temperaturabstimmung	37				
		5.1.3	Statische Stromabstimmung	41				
		5.1.4	Seitenmodenunterdrückung	42				
		5.1.5	Dynamisches Strom-Abstimmverhalten und Korrektur der Wellenlänge im Spektrum	44				
		5.1.6	Strahlprofil	45				
5	5.2	Spülb	ares Lasergehäuse mit Faserkonnlung	46				
0	.2	591 591	Strahlangang zur Baalisiarung dar Fasarkapplung und dar Bafaranzsignala	10				
		5.2.1	Strahlengang zur Reansierung der Faserköppfung und der Reierenzsignale	41				
		5.2.2 5.9.2	Defenenggelle gun Stabiligienung den Liniennegitien	40				
		0.2.0 E 0.4	Detektoren und Terreinen den mennetürlen zur Aufrehmen und Vermustür	49				
		0.2.4	Detektoren und Transimpedanzverstarker zur Aufnahme und vorverstar-	50				
		F 0 F		00 F 1				
		5.2.5	Einfluss der Kontamination auf die Spektrometerauflosung	51				
-	<	5.2.0	Korrektur der Spektrometermessungen	54 22				
5).3	Faserk	opplung	55				
		5.3.1	Kollimation	55				
_		5.3.2	Qualitat der Faserkopplung und optische Leistung am Faserende	56				
5	5.4	Chara	kterisierung der fluorhaltigen Glasfasern	57				
		5.4.1	Bestimmung der Dämpfung der IR-Photonics "Single-Mode" Glasfaser	58				
		5.4.2	Temperaturabhängiges Absorptionsverhalten	59				
		5.4.3	Bestimmung von numerischer Apertur und Modenfelddurchmesser	62				
5	5.5	Fazit		63				
6 I	Lasertechnik für den fasergekoppelten 1370 nm Laser							
6	3.1	Laserc	harakterisierung	65				
6	5.2	Chara	kterisierung der Quarzglasfaser	68				
6	5.3	Optise	he Störungen	69				
6	5.4	Fasero	ptische Baugruppen	70				
		6.4.1	Spülbares Lasermount und Lichtaufspaltung für die Spektrometerkompo-					
			nenten	70				
		6.4.2	Referenzzelle zur Stabilisierung der Linienposition	71				
6	5.5	Fazit		71				
7 (Offene Messzelle für zwei Laserstrahlen							
7	7.1	Zellen	geometrie	74				
7	7.2	Optise	he Simulation der Zwei-Strahl White-Messzelle	75				
7	7.3	Aufba	u und Ausstattung der Messzelle	79				
		7.3.1	Struktur und Materialien	79				
		7.3.2	Aufbau der Pylone	79				
		7.3.3	Integration der Optomechanik	81				
		7.3.4	Elektronische Signalübertragung	82				

INHALTSVERZEICHNIS

	7.4 Empfindlichkeit und Dynamik der Messzelle					
	7.5	Strömungssimulation für reale Flugbedingungen	85			
		7.5.1 Strömungsanalyse innerhalb der Messzelle	86			
		7.5.2 Abschätzung der spektroskopischen Messfehler	88			
	7.6	Mechanische Verformung und Dejustage im Flug	91			
		7.6.1 Berechnung der Seitenlasten	91			
		7.6.2 Dejustage der Messzelle	92			
8	Verg	gleich verschiedener Hygrometer mit dem HAI	95			
	8.1	Vergleich der Hygrometerdaten einer AIDA Kampagne	95			
		8.1.1 Rahmenbedingungen und Einbau der offenen Messzelle	95			
		8.1.2 Vergleich der Feuchtemessungen	97			
	8.2	Vergleichsmessung mit einer geschlossenen Messzelle	99			
9	\mathbf{Zus}	ammenfassung und Ausblick	101			
Da	Danksagung					
Li	Literaturverzeichnis					
Α	A Spiegelhalter mit Detektoren- und Faserfassungen					

III