Table of content

1. Introduction	6
2. Materials	
2.1 Instruments	16
2.2 Competent cells	18
2.3 Vectors and oligonucleotides	18
2.4 Kits and enzymes	19
2.5 Chemicals and other consumables	19
2.6 Media	22
2.7 Buffers and solutions	22
3 Methods	
3.1 Molecular biological methods	
3.1.1 Polymerase chain reaction	26
3.1.2 Site directed mutagenesis	26
3.1.3 DNA Sequencing	27
3.1.4 Cloning	28
3.1.5 Transformation	29
3.1.6 Plasmid preparation/Miniprep	29
3.1.7 Protein expression	29
3.1.8 Ammonium sulfate precipitation	30
3.1.9 Chromatographic methods	31
3.1.10 Electrophoresis of DNA and proteins	32
3.2 Biochemical methods	
3.2.1 Enzyme activity of phosphoglycerate kinase	34
3.2.2 Molecular encapsulation in polymeric nanocontainers	36
3.2.3 Labeling of PGK with fluorescent dyes	37
3.2.4 Cysteine specific protein cleavage	39

3.3 Optical methods	
3.3.1 Absorption spectroscopy	39
3.3.2 Circular dichrosim spectroscopy	40
3.3.3 Fluorescence spectroscopy	
3.3.3.1 Basic principles of fluorescence	43
3.3.3.2 Intrinsic protein fluorescence	46
3.3.3.3 Fluorescence anisotropy measurements	48
3.3.3.4 Photon induced electron transfer as a probe for	
the folding status of PGK	50
3.3.3.5 Fluorescence microscopy	52
3.3.3.6 Fluorescence correlation spectroscopy (FCS)	53
3.3.3.7 Förster resonance energy transfer measurements	
on single molecules	56
3.3.4 Dynamic light scattering (DLS)	60
4. Results	
4.1 Unfolding and refolding kinetics of phosphoglycerate kinase	
4.1.1 Thermal unfolding of PGK: Eyring-plot	62
4.1.2 Guanidine hydrochloride induced unfolding of PGK:	
Chevron-plot	64
4.2 Molecular encapsulation of PGK	
4.2.1 Probing the mobility of encapsulated proteins	
by fluorescence anisotropy	67
4.2.2 Unfolding and refolding transitions of encapsulated	
single PGK molecules	68
4.3 Preparation and characterization of the FRET sample	
4.3.1 Expression and purification of different PGK constructs	71
4.3.2 Labeling of single cysteine mutants of PGK	77
4.3.3 Characterizing the fluorescent dyes labeled to PGK	79
4.3.4 Labeling of PGK double cysteine mutants with a FRET pair	84
4.4 The native state of PGK	
4.4.1 Salt effects on the native state of PGK	87
4.4.1 Line broadening:	
Evidence for functional domain movements?	94

	III
4.5 Unfolding/refolding transitions of PGK	97
3.5.1 PGK inter-domain unfolding/refolding transitions	98
3.5.2 The unfolding transition of PGK N-Domain	103
5. Discussion and outlook	106
6. Summary	114
7. Zusammenfassung	115
Abbreviations	117
Bibliography	120
Erklärung, Veröffentlichungen	131
Danksagungen	132
Appendix I: Primer sequences	135
Appendix II: Amino acid sequences of the engineered PGK constructs	137