Contents

1.	Intro	roduction			
2.	Equ	uipment and materials			
	2.1.	NMR scanners	7		
		2.1.1. 7 T scanner for root imaging and DTI	7		
		2.1.2. 9.4 T scanner for diffusion investigations and velocity imaging			
		on natural sand \ldots	7		
	2.2.	Further experimental equipment	8		
		2.2.1. Optical microscopy of plant roots	9		
		2.2.2. Peristaltic pump for induced water flow through natural sand	9		
	2.3.	Samples used for NMR experiments			
		2.3.1. Growing conditions of the maize plant	9		
		2.3.2. Properties of the natural sand used for flow investigations $\ . \ .$	11		
3.	Diff	usion in natural porous media	13		
	3.1.	Restricted self-diffusion	15		
	3.2.	Anisotropic diffusion	15		
	3.3.	Flow in porous media	16		
4.	ory of NMR and MRI	17			
	4.1.	Fundamentals of nuclear magnetic resonance	17		
		4.1.1. Naming convention	17		
		4.1.2. Nuclear spins in the static magnetic field	18		
		4.1.3. Nuclear spins in a radio frequency alternating field	19		
		4.1.4. Nuclear spins in magnetic field gradients	22		
	4.2.	Magnetic resonance imaging	23		
		4.2.1. NMR signal from the k -space and the q -space	23		
		4.2.2. The slice selective gradient $G_{\rm s}$ and multislicing $\ldots \ldots \ldots$	26		

		4.2.3.	The read out gradient $\boldsymbol{G}_{\mathrm{r}}$ and the phase-encoding gradient $\boldsymbol{G}_{\mathrm{p}}$	26					
5.	Puls	Pulse sequences – methods currently known							
	5.1.	1D pu	lse sequences	29					
		5.1.1.	The spin echo	29					
		5.1.2.	NMR with pulsed field gradients for probing diffusion and flow	30					
		5.1.3.	The influence of constant magnetic field gradients	35					
		5.1.4.	The stimulated echo	37					
		5.1.5.	Stimulated echo with pulsed field gradients	38					
		5.1.6.	The 13-interval pulse sequence	40					
		5.1.7.	Theory of PFG NMR with anisotropic diffusion	42					
	5.2.	The 2	D pulse sequence DDCOSY	45					
	5.3.	Magne	etic resonance imaging pulse sequences	50					
		5.3.1.	Imaging with the spin echo pulse sequence	50					
		5.3.2.	Diffusion tensor imaging pulse sequence	52					
		5.3.3.	The stimulated echo pulse sequence combined with						
			imaging	54					
		5.3.4.	NMR velocity imaging	55					
6.	Puls	Pulse sequences – further developments							
	6.1.	Impro	vements of DDCOSY	61					
		6.1.1.	Shortening of DDCOSY to sDDCOSY	61					
		6.1.2.	sDDCOSY with cross term suppression	65					
	6.2.	13-inte	erval STEMSI for flow in natural porous media	66					
7.	Tecl	nniques	s of NMR data evaluation	69					
• •	7.1.	Metho	ds currently known	69					
		7.1.1.	DDCOSY: Inverse Laplace transformation	69					
		7.1.2.	MRI and velocity imaging: Fourier transformation	70					
		7.1.3.	DTI: Moore-Penrose pseudoinverse matrix for tensor determi-						
			nation	71					
	7.2.	New a	pproach of determining diffusion tensors	74					
		7.2.1.	The concept of least squares fitting	74					
		7.2.2.	Demonstration on model data	75					
			Moore-Penrose pseudoinverse	76					
			Levenberg-Marquardt least squares fit	77					

8.	Results and discussion 79							
	8.1. Diffusion tensor imaging on plant roots							
		8.1.1.	Experimental setup for high resolution MRI and DTI mea-					
			surements	79				
		8.1.2.	High resolution NMR imaging on plant roots	79				
		8.1.3.	Diffusion tensor imaging on plant roots	84				
	8.2.	One- a	and two-dimensional diffusion measurements in natural s and $\ . \ .$	96				
		8.2.1.	Experimental setup for 1D and 2D diffusion measurements $\ . \ .$	96				
		8.2.2.	The influence of internal field gradients on the 1D diffusion					
			determination \ldots	96				
		8.2.3.	2D investigations of diffusion behavior in natural s and $\ .\ .\ .$	100				
	8.3. Velocity imaging in natural sand							
		8.3.1.	Experimental setup for flow investigations on natural s and $\ . \ .$	103				
		8.3.2.	Velocity mapping on flow in natural sand	105				
9.	Con	clusion	and outlook	119				
Bibliography 12								
List of Figures 12								
Α.	A. Abbreviations and symbols							
В.	B. Acknowledgments							
C.	C. Curriculum Vitae							
D.	D. Publications							