Contents

Chapter	1	1		
Intr	oduction	1		
Chapter 2				
Fun	damentals ······	7		
2.1	Physical and technological background ·····	8		
2.2	Sample preparation	21		
2.3	Material and solar cell characterization methods ·····	24		
Chapter	r 3	43		
Thir	nner absorber layers in a-Si:H/μc-Si:H tandem cells······	43		
3.1	Introduction	44		
3.2	Thin-film a-Si:H/μc-Si:H tandem cells on different TCOs······	45		
3.3	Performance of a-Si:H/μc-Si:H tandem cells depending on total thickness ····	51		
3.4	Individual influence of top and bottom cell thickness ·····	58		
3.5	Thickness dependence of light-induced degradation	63		
3.6	Conclusion ·····	65		
Chapter	r 4 ······	67		
Opt	imization of very thin tandem cells ······	67		
4.1	Introduction	68		
4.2	Amorphous silicon with high band gap·····	69		
4.3	Single cells with high band gap a-Si:H·····	74		
4.4	Variation of window-p-doped layer ······	80		
4.5	Influence of doped layer thickness on tandem cells ·····	91		
4.6	Thin tandem cells at high deposition rate	96		
4.7	Conclusion	102		
Chapter	r 5	105		
Thir	n i n tandom calls an different substrates	105		

CONTENTS

	5.1	Introduction	106	
	5.2	Substrate preparation and characterization	107	
	5.3	Tandem cells in n-i-p configuration on different substrates	113	
	5.4	Matching behaviour for different substrates	118	
	5.5	Investigation on μc-Si:H bottom i-layer	120	
	5.6	Bottom cells deposited at higher silane concentration	128	
	5.7	Conclusion	132	
Cha	apter (5	.35	
	Struc	ture analysis on μc-Si:H by X-ray diffraction and Raman spectroscopy ··········· 1	L 35	
	6.1	Introduction1	136	
	6.2	Initial characterization of μ c-Si:H prepared with different silane concentrations 1	137	
	6.3	Correlation between Raman and XRD crystallinity 1	141	
	6.4	Hexagonal phase in μc-Si:H······	145	
	6.5	Preferential orientation in μc-Si:H······	149	
	6.6	Depth resolved crystallinity determination	152	
	6.7	Conclusion	160	
Cha	Chapter 7			
Conclusion 163				
	References			
	Danksagung ······ 185			
	Curri	culum Vitae······ 1	189	