Content

1. Summary	1
1.1 Summary English	1
1.2 Summary German	3
2. Introduction	5
2.1 The tricarboxylic acid cycle and related pathways in C. glutamicum	6
2.1.1 The TCA cycle and its regulation	7
2.1.2 The glyoxylate cycle and its regulation	10
2.1.3 The methylcitrate cycle and its regulation	11
2.2 Aconitase and its regulatory function	12
2.3 AcnR and the TetR family of transcriptional regulators	13
2.4 Aims of this work	15
3. Results	16
3.1 Biochemical characterisation of aconitase from Corynebacterium glutamicum	18
3.2 Systemic analysis of bacterial aconitase and isocitrate dehydrogenase deletion mutants: selection for secondary mutations inactivating citrate synthase	26
3.3 The <i>Corynebacterium glutamicum</i> aconitase repressor: scratching around for crystals	51
3.4 The TetR type transcriptional regulator AcnR of <i>Corynebacterium glutamicum</i> : an iron-sulphide sensor with two distinct ligand binding sites	55
4. Discussion	78
4.1 Aconitase in C. glutamicum	78

4.2 <i>C. glutamicum</i> Δacn and Δicd mutants	80
4.3 Citrate transport and toxicity	87
4.4 AcnR	88
4.5 Sulfur metabolism and regulation in C. glutamicum	91
4.5 Conclusions and perspective	93
5. References	94
6. Appendix	102
6.1 Supplemental material aconitase and isocitrate dehydrogenase mutants	102
6.2 RosR (cg1324), a hydrogen peroxide-sensitive MarR-type transcriptional	
regulator of Corynebacterium glutamicum.	134