Contents

1	Intro	roduction				
2	oretical and experimental concepts	11				
	2.1	Theoretical basics of scanning tunneling microscopy	11			
		2.1.1 The one-dimensional tunneling effect	11			
		2.1.2 Bardeen's perturbation theory approach	13			
		2.1.3 Tersoff-Hamann approximation	16			
		2.1.4 Tip-induced band-bending	20			
	2.2	The scanning tunneling microscope	21			
		2.2.1 Basic concept	21			
		2.2.2 Operation modes of a scanning tunneling microscope	21			
	2.3	Secondary ion mass spectroscopy	23			
2	Cundemontale of the model systems. Dremonsticn and surface star					
5	turo		27			
	$\sqrt{3} \times \sqrt{3}$ Ca overlayers on Si(111)	21 97				
	0.1	3.1.1 Sample propagation	$\frac{21}{97}$			
		3.1.2 Geometrical structure of $\sqrt{3} \times \sqrt{3}$ adatom layers on Si(111)	$\frac{21}{28}$			
		3.1.2 Geometrical structure of $\sqrt{3} \times \sqrt{3}$ Ga adatom layers on Si(111)	20			
	39	$G_2 \Lambda_s(110)$ surfaces	20			
	0.2	$3.2.1$ Properties of $G_2 \Delta s$ samples used	30			
		3.2.2 Coometrical and electronic structure of the cleavage surface	30 31			
		3.2.2 Geometrical and electronic structure of the cleavage surface	33			
		3.2.4 Propagation for the XSTM	00 34			
			94			
4	Tun	neling on 2D semiconductors: The case of $\sqrt{3} \times \sqrt{3}$ Ga on Si(111)	37			
	4.1	STM Measurements on $\sqrt{3} \times \sqrt{3}$ Ga overlayers on Si(111)	37			
		4.1.1 Constant-current STM measurements	37			
		4.1.2 Spectroscopical measurements with the STM	38			
	4.2	Decay of the density of states	40			
	4.3	4.3 Discussion of the origin of the tunneling electrons				
		4.3.1 Tunneling with parallel wave vectors	42			
		4.3.2 Correlation of inverse decay lengths with band structures	44			
		4.3.3 Ga overlayer and substrate bandgaps	47			

		4.3.4 Surface states in scanning tunneling spectroscopy	47			
	4.4	Conclusions of Chapter 4	48			
5	Elec	Electronic structure of dopants in $\sqrt{3} imes \sqrt{3}$ Ga overlayers on Si(111)				
	5.1	Measurements of localized dopant states	52			
		5.1.1 High-resolution constant-current STM measurements	52			
		5.1.2 Spectroscopical measurements with the STM	53			
		5.1.3 Discussion of dopant states and charges	54			
	5.2	Influence of dopants on the band structure	57			
		5.2.1 Decay of the dopant states into the vacuum $\ldots \ldots \ldots$	58			
		5.2.2 Discussion of the effect of dopants on the band structure	59			
	5.3	Conclusions of Chapter 5	61			
6	Pot	ential fluctuations in two-dimensional semiconducting structures	63			
	6.1	Measurements of potential fluctuations	64			
		6.1.1 Constant-current STM measurements	64			
		6.1.2 Spectroscopical measurements with the STM	65			
		6.1.3 Correlation of the local height and the dopant concentration	66			
	6.2	Analysis of local potential fluctuations	67			
		6.2.1 Extracting local potential data	67			
		6.2.2 Interpretation and application of a macroscopic model	73			
	6.3	Limits of nanoscale potential fluctuations	75			
		6.3.1 Experimental power spectrum and autocorrelation function .	75			
		6.3.2 Vanishing of potential fluctuations at high dopant concen-				
		trations	78			
		6.3.3 Modelling $n^+ \cdot n^{++}$ interface	79			
	6.4	Probability distribution for the conduction band edge energy	80			
	6.5	Conclusions of Chapter 6	82			
7	Delt	ta-doped layers in GaAs	83			
	7.1	Measurements of delta-doped layers	83			
		7.1.1 Structure of the sample	83			
		7.1.2 Constant-current STM measurements	84			
		7.1.3 SIMS measurements	87			
		7.1.4 Width of Be delta-doped layers	88			
	7.2	Discussion of the delta-doped layers embedded in intrinsic GaAs				
		(type B)	90			
		7.2.1 Theoretical expectations	90			
		7.2.2 Shape of Be delta-doped layers	92			
		7.2.3 Identifications of the mechanisms affecting the diffusion	94			
	7.3	Discussion of the delta-doped layers embedded in n -doped GaAs				
		(type A)	96			

		7.3.1	Identification of defect processes during MBE growth of Si-	~ -				
		729	doped embedding GaAs	97				
		1.3.2	Stability and reduced diffusion of the defta-doped layers em-	102				
	7.4	Conclu	isions of Chapter 7	102				
~	Б (107				
8			etics on GaAs(110) surfaces	107				
	8.1	Time-i	resolved ASTM measurements of Ga vacancies	107				
		8.1.1	Constant-current STM images of Ga vacancies	107				
		8.1.2	Ga vacancy formation rate	111				
	8.2	Rate e	equations of the vacancy formation kinetics	112				
		8.2.1	Vacancy rate equations	112				
		8.2.2	Adatom rate equations	116				
	8.3	Analys	sis of the kinetics	118				
		8.3.1	Rate equations for the specific system conditions	118				
		8.3.2	Approximation for small concentrations	120				
		8.3.3	Approximation for the saturation concentrations	122				
	8.4	Discus	sion of the atomistic processes	124				
		8.4.1	Results for <i>n</i> -type material	124				
		8.4.2	Comparison to p -type material	126				
	8.5	Conclu	isions of Chapter 8	127				
9	Con	clusion	S	129				
Pibliography								
ылиовгария								
List of abbreviations and symbols								
Ac	Acknowledgement							