Inhaltsverzeichnis

Inhaltsverzeichnis	III
Abbildungsverzeicl	unis VIII
Tabellenverzeichnis	3 XI
Summary	XV
Zusammenfassung	XVII
 Einleitung Das spezifisci 1.1 Das spezifisci 1.1.1 Der T 1.1.2 Der H Proteine in V 1.2.1 Peripi 1.2.2 Memil 1.3 Das humane 1.3.1 Aufba 1.3.2 Die H 1.3.2 Die H 1.3.3 Das a 1.4 NMR-Spektr 1.4.1 Gesch 1.4.2 NMR 1.5 Ziele der Arb 	1ne Immunsystem'-Zell-Rezeptor-Komplex (TCR-Komplex)3Korezeptor CD45Vechselwirkung mit Membranen6nere Membranproteine6oranverankerte Proteine7Immundefizienz-Virus Typ 1 (HIV-1)8au und Genetik des HI-Virus9olle des CD4-Moleküls bei der Infektion10kzessorische Virus Protein U (VpU)10oskopie12tichte, Entwicklung und Eigenschaften der NMR12-Untersuchungen an Modellmembransystemen16peit17
 2 Material 2.1 Bakterienstä 2.2 Plasmide 2.3 Oligonukleot 2.4 Biochemikali 2.5 Enzyme, Pro 2.6 Größenmarke 2.7 Sonstige Mate 	19 nme 19

	2.8	Semiautomatische Chromatographie				
	2.9	Datenbanken und Informationen zu DNA- und Aminosäuresequenzen sowie				
		Strukturen von Proteinen 25				
•						
3	Met	hoden 27				
	3.1	DNA-Isoherung				
	3.2	Bestimmung von DNA-Konzentrationen				
	3.3	DNA-Gelektrophorese 28				
	3.4	Extraktion von DNA aus Agarosegelen				
	3.5	Polymerasekettenreaktion (PCR) 29				
		3.5.1 DNA-Amplifikation				
		3.5.2 Kolonie-PCR mit $E. \ coli$				
	3.6	Klonierungstechniken				
		3.6.1 Spaltung von DNA durch Restriktionsenzyme 30				
		3.6.2 Herstellung von "blund ends"				
		3.6.3 Dephosphorylierung				
		3.6.4 Ligation von DNA 31				
	3.7	DNA-Sequenzierung 32				
	3.8	Bakterienkultur				
		3.8.1 Kultivierung und Konservierung von E. coli-Stämmen 33				
		3.8.2 Herstellung chemisch kompetenter Zellen 33				
		3.8.3 Transformation von E. coli				
	3.9	SDS-PAGE nach Laemmli				
		3.9.1 Prozess der Gelelektrophorese 34				
		3.9.2 Coomassie-Färbung von SDS-Gelen				
	3.10	Expression von rekombinanten Proteinen				
	3.11	1 Zellaufschluss				
		3.11.1 Nativer Zellaufschluss ohne Detergenzien				
		3.11.2 Seminativer Zellaufschluss mit Detergenzien				
	3.12	Proteinreinigungen				
		3.12.1 Affinitätschromatographie an Glutathion-Sepharose				
		3.12.2 Affinitätschromatographie an Ni ²⁺ -NTA-Agarose				
		3.12.3 Pufferwechsel durch Größenausschlusschromatographie 40				
		3.12.4 Abspaltung des Fusionspartners mit Thrombin bzw. PreScission 41				
		3.12.5 Reversed Phase Chromatographie (RPC)				
	3.13	Circulardichroismus (CD)-Spektroskopie				
	3.14	Fluoreszenzspektroskopie				
	3.15	Lichtstreuung				
	3.16	Präparation und Einsatz von Lipid-Vesikeln 46				
	20	3.16.1 Herstellung von Lipid-Vesikeln				
		3.16.2 Extrusionsverfahren zur Herstellung asymmetrischer Vesikel				
		3.16.3 Inkorporationstest mittels Zentrifugationsassay				
		3.16.4 Bindungstests mittels Zentrifugationsassav				

	3.17	'Kernresonanz (NMR)-Spektroskopie			49
		3.17.1	Präparat	ion von NMR-Proben	49
		3.17.2	NMR-Ex	xperimente	50
			3.17.2.1	Resonanzzuordnung	50
			3.17.2.2	Analyse mit Hilfe der sekundärstruktur-relevanten chemi-	
				schen Verschiebungen	54
			3.17.2.3	Bestimmung des heteronuklearen (¹ H- ¹⁵ N)-NOE	55
			3.17.2.4	Abschätzung der Proteindynamik aus Resonanzsignalbrei-	
				ten im $(^{1}H^{-15}N)$ -TROSY	55
			3.17.2.5	Bestimmung skalarer Kopplungskonstanten	56
			3.17.2.6	H_2O/D_2O -Austauschexperimente	57
			3.17.2.7	Messung Transferierter Dipolarer Kopplungen (TrDC)	58
			3.17.2.8	Analyse der Differenz der chemischen Verschiebungen bei	
				molekularen Wechselwirkungen	59
		3.17.3	NOE-Zu	ordnung und Strukturberechnung	59
			3.17.3.1	Interproton-Distanzeinschränkung	59
			3.17.3.2	Strukturberechnung	60
4	Evn	erimer	te und l	Freehnisse	61
1 Dag HIV-1 Valleyt			cvt	63	
		4.1.1	Expressi	on und Reinigung des rekombinanten Proteins VpUcyt aus	00
			E. coli .		63
		4.1.2	Circular	lichroismus (CD)-Spektroskopie	64
		4.1.3	Fluoresz	enzspektroskopie	67
		4.1.4	NMR-Sp	ektroskopie an freiem und mizellengebundenem VpUcyt	68
			4.1.4.1	Sequenzielle Resonanzzuordnung des freien VpUcyt	68
			4.1.4.2	Sequenzielle Resonanzzuordnung des mizellengebundenen	
				VpUcyt	73
			4.1.4.3	$(^{1}H^{-15}N)$ -HSQC-Experimente des VpUcyt mit und ohne DPC	76
			4.1.4.4	Sekundärstrukturanalyse mittels chemischer Verschiebungen	78
			4.1.4.5	Der heteronukleare ($^{1}H-^{15}N$)-NOE	78
			4.1.4.6	Dynamikabschätzung über Linienbreiten im (¹ H- ¹⁵ N)-	
				TROSY-Spektrum	80
			4.1.4.7	Bestimmung der skalaren ${}^{3}J_{H^{\alpha}H^{N}}$ -Kopplungskonstanten .	82
			4.1.4.8	Bestimmung und Analyse der struktureinschränkenden Pa-	
				rameter aus NOE-Korrelationen	83
			4.1.4.9	3D-Strukturberechnung und -analyse	85
		4.1.5	NMR-Sp	ektroskopie an mizellengebundenem, phosphoryliertem	
			VpUcyt	$(VpUcyt^{2P})$	92
			4.1.5.1	Einfuss der Mizellenumgebung auf den Phosphorylierungs-	_
				prozess	92
			4.1.5.2	Kartierung und Zuordnung der chemischen Verschiebungen	a -
				des $VpUcyt^{2r}$	93

			4.1.5.3	Sekundärstrukturanalyse mittels chemischer Verschiebungen	94
			4.1.5.4	Der heteronukleare (${}^{1}H{}^{-15}N$)-NOE	96
			4.1.5.5	Dynamikabschätzung über Linienbreiten im $({}^{1}H{}^{-15}N){}^{-1}$	
				TROSY-Spektrum	97
			4.1.5.6	Kartierung der Phosphorylierungsstelle auf der Oberfläche	
				des mizellengebundenen VpUcyt	98
		4.1.6	VpUcyt	in Wechselwirkung mit POPC-Vesikeln	100
	4.2	Der W	/ildtyp de	s humanen CD4	103
		4.2.1	Konstru	ktion des Initialklons pET43b_CD4tmcyt	103
		4.2.2	Klonieru	Ing an verschiedene Tags und Schnittstellen	104
		4.2.3	Expressi	on und Reinigung des CD4tmcyt	107
		4.2.4	Circular	dichroismus (CD)-Spektroskopie	108
		4.2.5	Inkorpor	ation des CD4tmcyt-Proteins in POPC-Vesikel	109
		4.2.6	Wechsel	wirkung des membraninsertierten CD4tmcyt-Proteins mit	
			HIV-1 V	pUcyt	110
		4.2.7	NMR-Sp	pektroskopie	111
	4.3	Die Va	ariante de	s humanen CD4	114
		4.3.1	Klonieru	ng, Expression und Reinigung des CD4mut	114
		4.3.2	Circular	dichroismus (CD)-Spektroskopie	116
		4.3.3	Inkorpor	ation des CD4mut-Proteins in POPC-Vesikel	117
		4.3.4	Wechsel	wirkung des membraninsertierten CD4mut-Proteins mit	
			HIV-1 V	pUcyt	118
		4.3.5	NMR-Sp	pektroskopie	120
			4.3.5.1	Temperaturoptimierung mittels 2D-NMR	120
			4.3.5.2	Homo- und heteronukleare 2D-NMR-Spektroskopie an	
				CD4mut	121
			4.3.5.3	Sequenzielle Zuordnung der Rückgratamidgruppen	123
			4.3.5.4	Zuordnung der Seitenketten-Resonanzen des CD4mut	125
			4.3.5.5	Vollständigkeit der Resonanzzuordnung	125
			4.3.5.6	Sekundärstrukturbestimmung mittels chemischer Verschie-	
				bungen	126
			4.3.5.7	Der heteronukleare (¹ H- ¹⁵ N)-NOE	127
			4.3.5.8	Bestimmung und Analyse der struktureinschränkenden Pa-	
				rameter aus NOE-Korrelationen	128
			4.3.5.9	Strukturberechnung und -analyse des mizelleninsertierten	
				CD4mut-Proteins	130
			4.3.5.10	Austauscheffekte mit dem Lösungsmittel	137
5	Diel	kussio	1		130
	51	Das H	- TV-1 VnT	levt	140
	0.1	511	Proteinr	einigung liefert große Mengen an hochreinem rekombinan-	T IO
		J.1.1	tem VnI	Invt	140
			som vpt	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ττU

	5.1.2	NMR-spektroskopische Experimente ermöglichten nahezu vollständi-				
		ge Resonanzzuordnung				
	5.1.3	Lösungsstruktur des VpUcyt in Anwesenheit von Mizellen				
		5.1.3.1	VpUcyt ist in Abwesenheit von Mizellen unstrukturiert	141		
		5.1.3.2	VpUcyt besitzt in Anwesenheit von Mizellen eine wohlde-			
			finierte Sekundärstruktur	141		
		5.1.3.3	Mizellengebundenes VpUcyt ist zeitweise tertiär gefaltet .	143		
		5.1.3.4	Vergleichsstruktursuche in Datenbanken liefert kein huma-	146		
	511	Dhoopho	meticerung von S52 und S57 hat keinen wegentlichen Finfluge	140		
	0.1.4	auf die 9	Sekundörstruktur des Proteins	147		
		51/1	Helizes 2 und 3 verändern ihre Proportionen infolge der	141		
		0.1.4.1	Phosphorylierung	147		
		5142	Sekundärstruktur in der Phosphorvlierungsregion wird sta-	1.11		
		0.1.4.2	bilisiert	148		
	515	Modell (des membrangebundenen VpUcvt-Proteins	149		
5.2	Das C	D4tmcvt		150		
0.2	5.2.1	Klonier	ingsstrategie lieferte vielseitiges Vektorkonstrukt für Mem-	-00		
		branpro	teine	150		
5.2.2 Effizientes Beinigungsprotokoll erlauht Gewinnung großer M						
		hochrein	nen CD4tmcyt-Proteins	150		
	5.2.3	CD4tmcyt kann nahezu verlustfrei in Liposomen inkorporiert werden 15:				
	5.2.4	CD4tmc	yt ist funktionell und bindet VpUcyt	152		
5.2.5 Die strukturelle Charakterisierung des CD4tmcyt in Mizel						
		möglich		152		
	5.2.6	δ CD4tmcyt-Konstrukt erlaubt Komplexstudien mit Wech				
		kungspa	rtnern in Membrananwesenheit	153		
5.3	Das C	D4mut		154		
	5.3.1	1 Die Mutagenese von CD4tmcyt zu CD4mut und dessen Reinigung				
		verliefen	erfolgreich	154		
	5.3.2	CD4mut	t und CD4tmcyt sind strukturell und funktionell ähnlich	155		
		5.3.2.1	Konformation des CD4mut ist nahezu unbeeinflusst von			
			den Mutationen	155		
		5.3.2.2	CD4mut bindet VpUcyt mit einer Dissoziationskonstanten			
			im höheren mikromolaren Bereich	155		
	5.3.3	Resonan	zzuordnung des CD4mut ist nahezu vollständig	156		
	5.3.4	Lösungs	struktur des CD4mut-Proteins in Mizellen	156		
		5.3.4.1	Die Transmembrandomäne ist eine reguläre α -Helix	157		
		5.3.4.2	Seitenkettenarchitektur und große Seitenketten positionie-			
			ren die Transmembranhelix in der Membran	158		
		5.3.4.3	Die zytoplasmatische Domäne beinhaltet eine stabile, am-			
			phipatische $lpha$ -Helix	159		

		ļ	5.3.4.4	Das Bindemotif für HIV-1 VpU und andere Wechselwir-		
				kungspartner ist teilweise unstrukturiert	160	
		ļ	5.3.4.5	Der C-Terminus ist unstrukturiert und sehr flexibel	161	
		5.3.5	Modell d	les membraninsertierten CD4mut-Proteins	161	
	5.4 Modell: Die Wechselwirkung zwischen CD4 und HIV-1 VpU					
	5.5	Ausblic	k		164	
A Anhang					1 67	
	A.1	Verzeich	nnis der .	Abkürzungen und Symbole	167	
	A.2	Ein- un	d Dreibu	uchstaben-Aminosäure-Kode	170	
Lif	Literaturverzeichnis 1					
n .						
Da	Janksagung 187					