	eitung 1
1.1	Zielsetzung der Arbeit3
2 Allg	emeiner Teil5
2.1	Der Shikimat-Biosyntheseweg5
2.1.1	Chorismat als Verzweigungspunkt in der Biosynthese6
2.1.2	Von Chorismat abgeleitete funktionalisierte Cyclohexadiene
2.1.3	Biotechnologisch produzierte Synthesebausteine aus dem gemeinsamen Shiki-
	mat-Biosyntheseweg9
2.2	Funktionalisierte Cyclohexadiendiole11
2.2.1	Cyclohexadiendiole durch Biotransformation
2.2.2	Cyclohexadiendiole durch chemische Synthesen
2.2.3	Cyclohexadiendiole in der Natur- und Wirkstoffsynthese
2.3	Funktionalisierte Cyclohexadienaminoalkohole26
2.3.1	Cyclohexadienaminoalkohole durch Biotransformation
2.3.2	Cyclohexadienaminoalkohole durch chemische Synthese
3 Spez	zieller Teil33
3.1	Chemische Synthese von racemischen Referenzsubstanzen 33
3.1.1	Synthese von racemischem 2,3-trans-CHA
3.1.2	Synthetische Darstellung von racemischem 2,3-trans-CHD
3.1.3	Analyseverfahren zur Bestimmung von Cyclohexadienmetaboliten 38
3.2	Mikrobielle Darstellung von 2,3- <i>trans</i> -CHA
3.2.1	Mutation und Klonierung der E. coli Anthranilatsynthase TrpE41
3.2.2	Klonierung des E. coli-Stammes F67 (LJ110-ΔtrpE)
3.2.3	In vitro-Darstellung von ADIC
3.2.4	In vitro-Darstellung von 2,3-trans-CHA
3.2.5	In vivo-Produktion von 2,3-trans-CHA
3.3	Isolierung und Reinigung von mikrobiell gewonnenen Substanzen57
3.3.1	Isolierung von 2,3-trans-CHD
3.3.2	Isolierung von Chorismat
3.3.3	Isolierung von 2,3-trans-CHA
3.4	Verwendung von funktionalisierten Cyclohexadienen als Synthesebausteine 64
3.4.1	Modifikation von 2,3-trans-CHD durch Veränderung und Einführung von
	funktionellen Gruppen 64
3.4.2	Verwendung von 2,3-trans-CHD in der Natur- und Wirkstoffsynthese 79

3	3.4.3	Verwendung von 2,3-trans-CHA in der organischen Synthese	84
3	3.4.4	Verwendung von 2,3-trans-CHA als Katalysator	88
4	Disk	ussion und Ausblick	91
4.1	1 (Optimierung der Gewinnung von 2,3-trans-CHA	92
4.2 V		Verwendung von 2,3-trans-CHD und 2,3-trans-CHA in der Naturs	toff und
	•	Wirkstoffsynthese	94
4.3	3 1	Verwendung 2,3 <i>-trans-</i> CHA als β-Aminosäure	101
4.4	١ ،	Verwendung als Katalysator	104
5]	Expe	erimenteller Teil	106
5.1	l I	Molekularbiologische Arbeiten	106
:	5.1.1	Verwendete E. coli-Stämme und Plasmide	106
:	5.1.2	Verwendete Medien und Chemikalien	107
:	5.1.3	Allgemeine molekularbiologische Arbeitstechniken	108
:	5.1.4	Klonierung von F67 (Deletion von trpE im E. coli-Stamm LJ110)	110
	5.1.5	Klonierung von pC14	113
5.2	2 1	Untersuchungen zur mikrobiellen Produktion und Produktgewinnung	ş 115
:	5.2.1	Allgemeine Arbeitstechniken	115
:	5.2.2	Verwendete Analytik	116
:	5.2.3	Untersuchungen zur Produktion von ADIC und 2,3-trans-CHA	117
	5.2.4	Isolierung von Metaboliten aus Fermentationsüberständen von E. coli	118
5.3	3 (Chemische Synthesen	123
:	5.3.1	Methoden und Materialien	123
:	5.3.2	Synthese von racemischem 2,3-trans-CHD	125
:	5.3.3	Synthese von racemischem 2,3-trans-CHA	130
-	5.3.4	Synthesen ausgehend von 2,3-trans-CHD (3)	135
:	5.3.5	Synthesen ausgehend von 2,3-trans-CHA (2)	154
:	5.3.6	Einsatz von 2,3-trans-CHA in der Katalyse	158
:	5.3.7	Röntgenkrsitallstrukturanalysen	159
6	Lite	raturverzeichnis	169