Inhaltsverzeichnis

Symbol- und Abkürzungsverzeichnis

Einleitung

1	Inte	ration von resistiven Materialien und TiO2-Nanopunkten in Speichermatrizen	5				
	1.1	Überlegungen zu Resistiven Speichermatrixen (Abschätzungen)					
	1.2	Schaltverhalten in resistiven Materialien	7				
	1.3	Integration von BST nach dem "Top-Down" - Verfahren	9				
		1.3.1 Prototypen-Design	0				
		1.3.2 Realisierung der Speichermatrizen nach dem "Top-Down" - Verfahren 1	2				
		1.3.3 Elektrische Charakterisierung der Crossbar-Strukturen	6				
		1.3.4 Bewertung der resistiven Speichermatrix nach dem "Top-Down" - Verfahren 1	8				
	1.4	Template basierte Herstellung von BST-Nanokristalliten					
		1.4.1 Elektronenstrahl-lithographisch definierte TiO ₂ -Nanopunkte	9				
		1.4.2 Herstellung von BST-Nanokristalliten	20				
	1.5	1.5 Hydrogen Silsesquioxan als Isolationsmatrix					
		1.5.1 Ein neues Material als Isolationsmatrix: Hydrogen Silsesquioxan	22				
		1.5.2 Die Einbettung von TiO ₂ Nanopunkten in eine Isolationsmatrix	24				
		1.5.3 Strukturieren von Hydrogen Silsesquioxan	27				
		1.5.4 Kontaktieren der in Hydrogen Silsesquioxan eingebetten Strukturen 2	28				
	1.6	1.6 Diskussion					
	1.7 Zusammenfassung und Ausblick						
2 Strukturierung mit Diblock- Copolymer Mizell Templates							
	2.1	Motivation	35				
	2.2	Selbstorganisation von Diblock-Copolymeren					
		2.2.1 Diblock-Copolymer Mizellen in Lösung	37				
		2.2.2 Mizellare Monofilme auf Substratoberflächen	39				
		2.2.3 Vorarbeiten zur experimentellen Durchführung 4	1				
	2.3	Strukturaufklärung in Lösung	13				

VII

1

3

	2.3.1	Aufbau der Neutronenkleinwinkelanlage KWS-1	43				
	2.3.2	Theorie der Neutronenstreuung	45				
	2.3.3	Auswertung des Kleinwinkelexperimentes	47				
	2.3.4	Auswertung der Neutronenstreuung an Diblock-Copolymer Lösungen	48				
	2.3.5	Dynamische Lichtstreuversuche an Diblock-Copolymer Lösungen	52				
	2.3.6	Technische Realisierung der Dynamischen Lichtstreuversuche	53				
	2.3.7	Auswertung der Dynamischen Lichtstreuversuche an Diblock-Copolymer Lö-					
		sungen	53				
2.4	Herstel	llung von Nanokristalliten über selbstorganisierenden Masken	55				
	2.4.1	Preparation und Charakterisierung von Substratoberflächen	55				
	2.4.2	Selbstorganisation von Diblock-Copolymer Mizellen auf unterschiedlichen Sub-					
		stratoberflächen	56				
	2.4.3	Entfernen der Diblock-Copolymere und Reduktion der Goldsalze	59				
	2.4.4	Herstellen von TiO ₂ -Kristallisationskeimen und					
		Abscheidung von Bleititanat (PbTiO ₃)	62				
2.5	Diskus	sion	66				
2.6	Zusam	menfassung und Ausblick	71				
Rea	lisierun	g eines Nanogap-Chips	75				
3.1	Motiva	tion	75				
3.2	Grundl	agen der elektrochemischen Zelle	77				
3.3	Struktu	irierungstechniken	80				
	3.3.1	Direkte Strukturierung: Grundlagen der Elektronenstrahl-Lithographie	80				
	3.3.2	Elektronenstrahlempfindliche Resiste (Chemische Prozesse und Proximity Effekt)	84				
	3.3.3	Eingesetzter Zweilagen-Fotolack	88				
	3.3.4	Indirekte Strukturierungstechnik: Optische Lithographie	90				
	3.3.5	Reaktives Ionenätzen	92				
3.4	Anforderungen an das Design						
3.5	i Herstellungsroute und Beschreibung des Nanogap-Chips						
	3.5.1	Herstellung des Nanogap-Chips	95				
	3.5.2	Verschiedenste Formvarianten für Nanoelektroden	99				
	3.5.3	Unterschiedliche Passivierungs-Schichten	101				
	3.5.4	Elektrochemische Zelle mit Nanoelektroden	103				
3.6	6 Ergebnisse						
	3.6.1	Elektrodenanordnungen und Form-Varianten	104				
	3.6.2	Reproduzierbarkeit / Strukturierungslimit	106				
	3.6.3	Beständigkeit der unterschiedlichen Passivierungs-Schichten	110				
	3.6.4	Sub-2nm Abstand zwischen Nanoelektroden	112				
3.7	3.7 Diskussion						

	3.8	Zusan	menfassung und Ausblick	. 118
4	Mes	sungen	an Gold-Nanopartikel-Anordnungen	121
	4.1	Motiv	ation	. 121
	4.2	Mathe	matische Beschreibung von Tunnelkontakten	. 122
		4.2.1	Quantisierungsbedingungen und Coulomb-Blockade	. 122
		4.2.2	Theorie des Einzel-Elektron-Transistors	. 125
		4.2.3	Zweidimensionale Anordnung von Tunnelkontakten und erste Abschätzungen .	. 127
	4.3	Organ	isation von Goldnanoclustern	. 128
		4.3.1	Charakterisierung der verwendeten Goldnanopartikel	. 129
		4.3.2	Nanopartikel Depositions Vorrichtungen und	
			Versuchsaufbau für Coulomb-Blockade Messungen	. 132
		4.3.3	Coulomb-Blockade Messungen in Goldnanostrukturen	. 134
	4.4	Disku	ssion	. 139
	4.5	Zusan	menfassung und Ausblick	. 141
5	Ein	Blick ir	n die Zukunft	145
Li	terat	urverze	ichnis	149