Inhaltsverzeichnis

KAPITEI	LI EINLEITUNG	1
1.1	Friedliche Nutzung der Kernenergie	1
1.2	Motivation zur Abtrennung der langlebigen Radionuklide	2
1.3	Abtrennverfahren	6
1.3.1	Abtrennung von Uran und Plutonium bei der Wiederaufarbeitung	
	mit dem PUREX-Prozess	6
1.3.2	Abtrennung der Minoren Actinoiden - eine große Herausforderung	7
1.3.3	TRUEX-Prozess	9
1.3.4	DIAMEX-Prozess	10
1.3.5	Tripyridintriazine und BTP	11
1.3.6	Dithiophosphinsäuren	12
1.3.7	Pyrochemische Methoden	13
1.4	Aufgabenstellung	14
KAPITEI	LII SYNTHESE VON SELEKTIVEN EXTRAKTIONSMITTELN	15
2.1	Anforderungen an das Extraktionsmittel	15
2.2	Synthesestrategien zur Darstellung von Dithiophosphinsäuren	19
2.3	Überblick der nach Higgins synthetisierten Dithiophosphinsäuren	24
2.4	Überblick der über Grignard-Reagenzien synthetisierten	
	Dithiophosphinsäuren	26
KAPITEI	LIII PRÄPARATIVER TEIL	31
3.1	Instrumente und Chemikalien	31
3.2	Beschreibung der organisch-chemischen Versuche	34
3.2.1	Bereitung der Grignard-Verbindungen	34
3.2.2	Synthese der Dithiophosphinsäuren über Grignard-Verbindungen	34
3.2.3	Synthese der Ammoniumsalze mittels Ammoniakgas	35
3.2.4	Synthese der Ammoniumsalze mittels Ammoniumcarbonat	35
3.2.5	Synthese des p-Methoxyphenylperthiophosphinsäureanhydrids	35
3.2.6	Synthese der Dithiophosphinsäuren nach W. A. Higgins	36

Versuch 1a 4-Methoxyphenylmagnesiumbromid <u>2</u>	37
Versuch 1b Bis(4-methoxyphenyl)dithiophosphinsäure <u>3</u>	37
Versuch 2a 4-Methylmagnesiumphenylbromid <u>4</u>	39
Versuch 2b 4-Methoxyphenyl(4-methylphenyl)dithiophosphinsäure <u>5</u>	39
Versuch 3a 1-Heptanmagnesiumbromid <u>6</u>	41
Versuch 3b Heptyl(4-methoxyphenyl)dithiophosphinsäure 7	41
Versuch 4a Diphenylmethylmagnesiumbromid <u>8</u>	43
Versuch 4b Diphenylmethyl(4-methoxyphenyl)dithiophosphinsäure 9	43
Versuch 5a tert-Butylmagnesiumbomid <u>10</u>	45
Versuch 5b tert-Butyl(4-methoxyphenyl)dithiophosphinsäure 11	45
Versuch 6a Cyclohexylmagnesiumbromid <u>12</u>	47
Versuch 6b Cyclohexyl(4-methoxyphenyl)dithiophosphinsäure 13	47
Versuch 7a 4-Fluorophenylmagnesiumbromid <u>14</u>	49
Versuch 7b 4-Fluorophenyl(4-methoxyphenyl)dithiophosphinsäure <u>15</u>	50
Versuch 8a 4-Chlorophenylmagnesiumbromid <u>16</u>	51
Versuch 8b 4-Chlorophenyl(4-methoxyphenyl)dithiophosphinsäure 17	52
Versuch 9a 3-Trifluoromethylphenylmagnesiumbromid <u>18</u>	53
Versuch 9b 4-Methoxyphenyl[3-(trifluoromethyl)phenyl]-	
dithiophosphinsäure <u>19</u>	54
Versuch 10a Biphenyl-4-magnesiumbromid <u>20</u>	55
Versuch 10b 1,1'-Biphenyl-4-yl(4-methoxyphenyl)dithiophosphinsäure <u>21</u>	56
Versuch 11 Bis(4-chlorophenyl)dithiophosphinsäure <u>1</u>	57
Versuch 12 Diphenyldithiophosphinsäure <u>22</u>	59
Versuch 13 Bis(4-fluorophenyl)dithiophosphinsäure <u>23</u>	60
Versuch 14 Bis(3,4-dichlorophenyl)dithiophosphinsäure <u>24</u>	61
3.3 Beschreibung der Flüssig/Flüssig-Extraktionsversuche	63
3.3.1 Präparation der Proben zur Bestimmung der Extraktionseigenschaften	63
3.3.2 Präparation der Proben für die Slope Analyse	63
3.4 Durchführung der potentiometrischen Titrationen	64
3.4.1 Kalibrierung der pH-Elektrode	64
3 4 2 Bestimmung der pKs-Werte verschiedener Dithiophosphinsäuren	64

KAPITEI	L IV FLÜSSIG/FLÜSSIG-EXTRAKTION	66
4.1	Historische Bedeutungen der Extraktion	66
4.2	Grundlagen der Flüssig/Flüssig-Extraktion	66
4.2.1	Der Verteilungskoeffizient D und der Abtrennfaktor SF	67
4.2.2	Arten der Flüssig/Flüssig-Extraktion	68
4.3	Untersuchung der Extraktionseigenschaften verschiedener	
	Extraktionssysteme	70
4.3.1	Einfluss des Liganden auf die Extraktionseigenschaften	72
4.3.2	Einfluß verschiedener Phosphate auf das Extraktionsvermögen	83
4.3.3	Einfluss verschiedener Phosphinoxide auf das Extraktionsvermögen	85
4.3.4	Einfluss des Lösungsmittels auf das Extraktionsvermögen	87
4.4	Ermittlung der pks-Werte verschiedener Dithiophosphinsäuren mittels	
	potentiometrischer Titrationen	89
4.4.1	Bestimmung von Dissoziationskonstanten in nicht wässrigen Medien	
	nach der Yasuda-Shedlovsky-Methode	90
4.4.2	Zusammenhang zwischen der Säurestärke und den Extraktionseigen-	
	schaften der untersuchten Dithiophosphinsäuren	93
4.5	Zusammenfassung der Ergebnisse aus den Extraktionsversuchen	95
KAPITEI	L V DAS SYNERGISTISCHE EXTRAKTIONSSYSTEM	
	(CIPH)₂PSSH/TEHP	96
5.1	Einleitung	96
5.2	Theoretische Hintergründe	98
5.3	Ermittlung der Stöchiometrie der Extraktionsgleichung des Systems	
	M ^{III} , (ClPh) ₂ PSSH <u>1</u> und TEHP mittels der Slope Analysis	103
5.3.1	Messung der pH-Abhängigkeit des Extraktionssystems	
	(ClPh)₂PSSH/TEHP	103
5.3.2	Messung der [(ClPh) ₂ PSSH]-Abhängigkeit des Extraktionssystems	
	(ClPh)₂PSSH/TEHP	110
5.3.3	Messung der [TEHP]-Abhängigkeit des Extraktionssystems	
	(ClPh) ₂ PSSH/TEHP	118

KAPITEL IX	LITERATURVERZEICHNIS	186
KAPITEL VI	II AUSBLICK	183
KAPITEL VI	I ZUSAMMENFASSUNG	178
, 011		
	Am- und Eu-Komplexen	173
	echnung der Bindungsabstände und Spannungsenergien	- , -
6.3.4 Ziels	-	172
	einfachungen bei Kraftfeldrechnungen	170
	Vergleich zu den berechneten Strukturen	165
	fische Darstellung der Kristallstrukturen aus der CSD-Datenbank	133
	Parametrisierung ftfeldparameter der Metallkomplexe	157 159
	out-of-plane-Funktion (E_{δ})	157
	serstoffbrückenbindungen (E _{hb})	156
	ctrostatische Wechselwirkungen (E_{ϵ})	156
	Torsionsparameter (E_{Φ})	155
	Bindungswinkelterm (E_{θ})	154
	Potential für die nichtbindenden Wechselwirkungen (E _{nb})	153
	Bindungsenergieterm (E _b)	151
	bau eines Molecular Mechanics Programms	149
	Molecular Mechanics Modell	148
	ktur und Energie	147
KAPITEL VI	MOLECULAR MECHANICS	147
tem	peraturabhängige Messungen von Verteilungskoeffizienten	138
5.3.5 Erm	ittlung von thermodynamischen Daten durch	
Ker	nresonanzspektroskopie	127
	ersuchung des Aggregationsverhaltens von (ClPh) ₂ PSSH <u>1</u> mit	