INTRODUCTION 1

1. MAIN FEATURES OF PACVD TECHNIQUE 3

- 1.1 The role of Glow Discharge in Plasma Processes 4
- 1.2 Collision Dissociation by Electrons 5
- 1.3 Transport Kinetics Effect 5
- 1.4 Spatial Chemical Effects 6
- 1.5 P ACVD -Advantages and Limitations 6

2. APPLICATION OF PACVD IN TIN COATINGS FORMATION 9

- 2.1 PACVD Coatings Preparation Applying Metal Halides 9
- 2.1.1 Basic Principles 9
- 2.1.2 Research Experiances 10
- 2.2 PACVD of TiN Applying TiCI4-NH3 Reactive Mixture 20
- 2.2.1 Basic Process Principles 20
- 2.2.2 Thermodynamic Considerations 21
- 2.2.3 NH3 Decomposition at Plasma Conditions 23
- 2.2.4 Practical Experiences 23
- 2.3 PACVD TiN Applying Organo-Metallic Precursors 25
- 2.3.1 Basic Process Principles 25
- 2.3.2 Most Recent Experiences 26

3. ON SOME DETAILS OF PACVD OF TIN REVEALED AT OUR RECENT INVESTIGATIONS 29

- 3.1 General Remarks 29
- 3.2 PACVD Apparatus Design 29
- 3.2.1 Imposed Requirements 29
- 3.2.2 Apparative Details 30
- 3.2.3 Importance of the Gas Inlet/Gas Distribution System Configuration 32
- 3.2.4 Accessory Equipment, Process Control 33
- 3.3 Process Performance Details. 33
- 3.3.1 Materials Applied 33
- 3.3.2 Samples and Samples Preparation 34
- 3.3.3 Coating Procedure 34
- 3.3.3.1 Predeposition Steps 35
- 3.3.3.2 Deposition Step 35
- 3.3.4 Effect of Different Proceess Variables 35
- 3.3.5 Most Convenient Deposition Parameters 40

- 3.4 Coatings Characterization 40
- 3.4.1 Optical Microscopy 40
- 3.4.2 Coating Cristallinity 42
- 3.4.3 Coating Morphology, Microstructure 43
- 3.4.4 Adhesion 43
- 3.4.5 Microhardness 44
- 3.4.6 Colour of the Coatings 44

4. SUMMARIZING REMARKS AND FUTURE AREAS OF DEVELOPMENT 45

References 49