Contents

Abstr	\mathbf{ct}	I		
Kurzfassung III				
1 Int	oduction	1		
1.1	Overview of tribology	2		
1.2	Surface roughness	3		
	1.2.1 Lessons from Nature	3		
	1.2.2 Modern applications	5		
1.3	Surface roughness enters tribology	6		
2 M	tiscale Molecular Dynamics	9		
2.1	Simulation method	9		
	2.1.1 Numerical integration algorithm	9		
	2.1.2 Interatomic potential and potential truncation	0		
	2.1.3 Periodic boundary condition	1		
2.2	The ancestor of the "smartblock"	1		
	2.2.1 A lattice of atoms connected through springs	2		
	2.2.2 The springs	2		
2.3	Elastic properties of a medium with cubic symmetry	3		
	2.3.1 The Poisson ratio of the Smartblock is zero	4		
	2.3.2 Anisotropy of the Smartblock	4		
2.4	Going multiscale	6		
3 Ar	a of Contact between Randomly Rough Surfaces	9		
3.1	Introduction	9		
3.2	Multiscale molecular dynamics	1		
	3.2.1 Why use multiscale molecular dynamics?	1		
	3.2.2 Parameters and potential	3		
	3.2.3 Self affine fractal surfaces	4		
3.3	Numerical results	5		
	3.3.1 Test cases: Hertz contact and complete contact	6		
	3.3.2 Contact mechanics without adhesion	0		
	3.3.3 Contact mechanics with adhesion	1		
3.4	Discussion	2		
3.5	Summary	7		

4	Inte	erfacial Separation from Small to Full Contact without adhesion	39
	4.1	Introduction	39
	4.2	Interfacial separation without adhesion	40
	4.3	Molecular Dynamics	43
	4.4	Numerical results	47
		4.4.1 Contact area from small to full contact	47
		4.4.2 Interfacial surface separation from small to full contact	50
	4.5	Contact mechanics for a measured surface	54
	4.6	Summary	58
5	Inte	erfacial Separation and Contact Area with Adhesion	61
	5.1	Background	61
	5.2	Interfacial separation with adhesion	62
	5.3	Molecular dynamics	62
	5.4	Numerical results	63
		5.4.1 Interfacial separation u vs. squeezing pressure p with adhesion \ldots	63
		5.4.2 Probability distribution of u and p	63
		5.4.3 Contact area comparison between MD and Theory	65
	5.5	Summary	65
6	The	eory of the Leak-rate of Seals	69
	6.1	Introduction	69
	6.2	Basic picture of leak-rate	70
	6.3	Results	73
		6.3.1 Numerical results	73
		6.3.2 Molecular dynamics results	74
	6.4	Improved analytical description	80
	6.5	Comparison with experiment	81
	6.6	Comment on the role of non-uniform pressure, rubber viscoelasticity and	-
		adhesion	82
	6.7	Dynamical seals	83
	6.8	A new experiment	87
	6.9	Summary	87
7	Hov	v do Liquids Confined at the Nanoscale Influence Adhesion?	91
	7.1	Motivation	91
	7.2	Preparing the initial configuration	92
	7.3	Numerical results	92
		7.3.1 Confined liquid on flat surfaces	92
		7.3.2 Confined liquid on rough surfaces	94
	7.4	Contact hysteresis	98
	7.5	Discussion	101
	7.6	Summary	101
8	Effe	ect of Surface Roughness and Adsorbates on Superlubricity	103
	8.1	Introduction	103
	8.2	Model	104
	8.3	Numerical results	106
	0.0	8.3.1 Influence of surface roughness on friction	107
		8.3.2 Dependence of the friction on the load	111
		8.3.3 Bole of adsorbates	116
			0

	8.4	Summary	118
9	Nar	odroplets on Rough Hydrophilic and Hydrophobic Surfaces	119
	9.1	Introduction	119
	9.2	Theoretical background	120
		9.2.1 Flat surfaces	121
		9.2.2 Rough surfaces: minimum free energy state	121
		9.2.3 Rough surfaces: activation barriers and hysteresis	124
		9.2.4 Cassie and Wenzel states for randomly rough surfaces	127
	9.3	Simulation Method	128
		9.3.1 Molecular dynamics model	128
		9.3.2 Multiscale rough surfaces	131
	9.4	Numerical results	132
	0.1	9.4.1 Static contact angle on hydrophobic surface	132
		9.4.2 Dynamic contact angle: Contact angle hydrophobic surface	13/
	95	Discussion	130
	9.6	Summary	140
	5.0	Summary	110
10	Con	cluding Remarks	141
A	cknow	vledgments	143
\mathbf{A}	Con	tact Mechanics Theories	145
	A.1	Single asperity contact	145
		A.1.1 Hertz theory	145
		A.1.2 JKR theory	145
	A.2	Multi asperities contact	147
		A.2.1 Greenwood-Williamson theory	147
		A.2.2 Bush-Gibson-Thomas theory	148
		A.2.3 Persson theory	148
в	Pres	ssure Distribution between Randomly Rough Surfaces	151
\mathbf{C}	Dist	ribution of Surface Slopes for Randomly Rough Surfaces	153
	C.1	The surface area A and the average surface slope ξ	153
	C.2	Surface slope probability distribution	154
	C.3	Solution of the diffusion equation	155
	C.3 C.4	Solution of the diffusion equation	$155 \\ 156$